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Abstract  We consider an extension of Thomson’s [8] two-particle Lagrangian stochastic model that is constructed to be consistent
with the 4/5 law of turbulence. It is shown that one effect of non-zero skewness in the longitudinal relative velocity is to reduce the
value of Richardson’s constant by approximately a factor of two relative to the model with zero skewness and that this value is close to
recent measurements from direct numerical simulation of homogeneous isotropic turbulence.

INTRODUCTION

The dispersion of pairs of particles in a turbulent fluid is a celebrated problem in the study of turbulence. Richardson [5]
studied the problem experimentally and suggested that relative dispersion is governed by a diffusivity which is propor-
tional to 74/ where r is the absolute separation of a pair. The solution of the associated diffusion equation is a probability
density function (pdf) for r which is non-Gaussian but self-similar. This leads to the celebrated result that (r?) o 3
once the initial separation, rq, is forgotten. (This result can also be derived using dimensional arguments asssuming
Kolmogorov’s hypotheses for homogeneous isotropic turbulence.) As the veracity of this result in real turbulence is still
unknown, relative dispersion remains an active field of research not only for its theoretical interest but also because of its

practical importance via the relationship between relative dispersion and concentration fluctuations.
LAGRANGIAN STOCHASTIC MODEL

Consider two particles with respectively position @; and velocity w; (¢ = 1,2) at time ¢. The trajectory of the pair can
be represented by the six-dimensional vector & = (21, @2) and its velocity by w = (11, u2). The evolution of (&, 1) is
given by
du; = ai(u,w,t) dt—‘—b?‘,_}‘ dWJ(t) e=1,..., 6 (1)
de = wudt

where W is a vector-valued Wiener process, b;; is chosen to be \/C_gedij for consistency with the Lagrangian velocity
structure function in the inertial subrange, C) is the constant of proportionality in this structure function and ¢ is the mean
kinetic energy dissipation rate. The well-mixed condition [7] constrains the model to be consistent with the Eulerian
velocity statistics and leads to an appropriate form of the drift term.

In order to determine a(w, @, t) we use the Fokker-Planck equation corresponding to (1) and, following [7, 8], partition
a into a'Y), which satisfies a balance between an advective term in velocity-space and the diffusive term of the Fokker-
Planck equation, and a(?) which satisfies the non-diffusive part of the Fokker-Planck equation (which is the exact transport
equation satisfied by the Eulerian velocity pdf, pr(u)).

THE EULERIAN VELOCITY PDF

We note that in 3-D the model reduces to a quasi-two-dimensional model in isotropic turbulence: it is thus simpler to
work in spherical polar coordinates. We assume that pr(u) is separable so that for isotropic turbulence
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where | is the longitudinal component of © and u, = +/ u4 + u?, where | and u, are the perpendicular components.
It follows from the circular symmetry of u and uy- that p,,, (uy) ~ N(0,02 ) where 02 = (4/3)C(er)?/? and C' = 2
is the Kolmogorov constant. While evidence from direct numerical simulation (DNS) of relative dispersion indicates that
pe(u) is not separable [4, 6] it is a necessary step to make the model tractable. 1t will be of interest to see how well the
model performs despite this limitation.
The longitudinal pdf, p,,, is derived following an approach used in modelling single-particle dispersion in the convective
atmospheric boundary layer. In this case the pdf is positively skewed i.e. there is a relatively low probability of strong
updraughts versus a high probability of weak downdraughts. Here, p,, is negatively skewed. Following [1, 3, 2], we
specify py, as the weighted sum of two Gaussian distributions:
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where A;, o,,; and u); are as yet unspecified. In order to determine these unknowns and to construct a pdf that gives the
correct first four moments, Du, must satisfy
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It is also assumed that Uj; = 040w where oy = —ap = 1. Analytical forms of A; and Ty Are found by substituting

(2) and (3) into (4)—(5) and solving for A; and Oy i- Once py is known, a'? can be obtained from the transport equation
for pg.

RESULTS

DNS results suggest 5 < Cy < 7; here we choose Cy = 6. Model statistics are computed with 100,000 pairs using
an adaptive time step. As expected, once g is forgotten, the mean-square separation (r2) grows like get® where g is
a constant. The value of g is much sought after: both DNS and experimental values are the subject of considerable
uncertainty due largely to the lack of a sufficiently long inertial subrange. To date g = 0.5 is often taken to be the best
available estimate. Comparing the Gaussian and non-Gaussian versions of the model in figure la, we see that the effect
of non-zero skewness in the Eulerian velocity distribution is to reduce the value of g by approximately a factor of two.
The skewness of r is shown in figure 1b. Since = can never decrease below zero, in both cases the pdf of r is positively
skewed. In the non-Gaussian case there is an increased probability of particles moving towards each other with large
velocities (compared with the Gaussian case). Hence, the skewness is reduced in the non-Gaussian case. A similar
difference can be seen in the kurtosis of 7.
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Figure 1. For both Gaussian and non-Gaussian versions of the model: (a) compensated plot of {r); (b) skewness of r, S,.
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