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Abstract Three-dimensional incompressible magnetohydrodynamic (MHD) turbulence with a strong uniform magnetic field b0 may

be governed by the regime of weak turbulence. At leading order, it is known that the asymptotic regime of weak MHD turbulence is

achieved via three-wave resonant interactions with the scattering of two of these waves on a third/2D mode for which k‖ = 0. For zero

cross-helicity, the expected exact solution is an energy spectrum in k−2

⊥ . Higher-order statistics has, however, never been reported in

the literature. Therefore, we have recently investigated this question with high resolution direct numerical simulations [10]. We found

the presence of strong intermittency when the vector separation of structure functions is taken transverse to b0. This result may be

explained by the influence of the 2D modes whose regime belongs to strong turbulence. In addition to shed light on the origin of this

intermittency, we derived a log–Poisson law, ζp = p/8 + 1− (1/4)p/2, which fits perfectly the data and highlights the important role

of parallel current sheets.

INTRODUCTION

Recently, growing interest has been given to the study of intermittency in the weak turbulence (WT) regime [4]. WT is the

study of the long-time statistical behavior of a sea of weakly interacting nonlinear dispersive waves for which a natural

asymptotic closure may be obtained. The energy transfer between waves occurs mostly among resonant sets of waves and

the resulting energy distribution, far from a thermodynamic equilibrium, is characterized by a wide power law spectrum

that can be derived exactly [11]. WT is a very common natural phenomenon studied in, e.g. nonlinear optics [3], superfluid

helium and processes of Bose-Einstein condensation [9], rotating fluids [6] and space plasmas [5]. Intermittency has been

observed in the situation where coherent structures like sea foam [12] or freak ocean waves [8] are present. In these

particular examples, intermittency is linked to the breakdown of the weak nonlinearity assumption induced by the WT

dynamics itself and therefore cannot be considered as an intrinsic property of this regime.

Weak MHD turbulence differs significantly from other cases because of the singular role played by the 2D modes for

which k‖ = 0 (k is the wavevector in Fourier space and the subscript ‖ indicates the component of k parallel to the guide

field b0). Since Alfvén waves have frequencies ω±
k = ±k‖vA (with vA the Alfvén speed) and only counter-propagating

waves can interact, the three-wave resonance condition ω+
k1

+ ω−
k2

= ω±
k3

and k1 + k2 = k3, implies that at least one

mode must have k‖ = 0. This mode which acts as a catalyst for the nonlinear interaction, is not a wave but rather a kind

of two-dimensional condensate with a characteristic Alfvén time τA ∼ 1/
(

k‖vA
)

= +∞ and cannot be treated by WT.

The standard way to overcome this complication has been to assume that the k‖ spectrum of Alfvén waves is continuous

across k‖ = 0. Under this assumption a k−2
⊥ energy spectrum was predicted analytically in the simplest case of zero

cross-helicity with a direct cascade towards small-scales [7]. This prediction has been confirmed observationally [14] and

numerically [1, 13]. We have re-investigated this regime with high resolution (with 15362× 128 collocation points) direct

numerical simulations [10]. We present below the main result, i.e. the intermittency law corresponding to weak MHD

turbulence.

INTERMITTENCY LAW

To derive an intermittency law for weak MHD turbulence, we first need to introduce the symmetric structure functions,

Sp =
〈

(

δz+
)p/2

〉〈

(

δz−
)p/2

〉

= Cp ℓ
ζ(p)
⊥ , (1)

where z
± = v ± b are the Elsässer fields (v is the velocity and b the magnetic field normalized to a velocity) and δz±

are the increments of these fields (between two points separated by a vector ℓℓℓ⊥ transverse to b0). We want to build a

model that fits the exact solution of WT (energy spectrum in k−2
⊥ ) which in physical space implies ζ(2) = 1. Then,

following the original development [15] we define: Sp = Cp〈ε
p/2〉ℓ

p/2
⊥ , where 〈ε〉 is the mean dissipation rate of energy

and 〈εp/2〉 ∼ ℓ
µp/2

⊥ . The latter relation is the so-called refined similarity hypothesis. The log–Poisson distribution for the

dissipation leads to the general relation [15]: µm = µ(m) = −m∆ + C0(1 − βm), where ∆ and β are linked to the

co-dimension C0 of the dissipative structures such that C0 = ∆/(1 − β). In our case, the direct numerical simulations

[10] show clearly the domination of current sheets for which the co-dimension is C0 = 1. The system is closed by

defining the value of ∆ which is related to the dissipation of the most singular structures, such that ℓ−∆
⊥ ∼ E∞/τ∞,



where E∞ is the energy dissipated in these most singular structures and τ∞ ∼ ℓ/vℓ is the associated time-scale. ∆ may

be obtained by considering the following remarks. Weak MHD turbulence behaves very differently from isotropic MHD

because in the former case the regime is driven at leading order by three-wave resonant interactions, with the scattering of

two of these waves on a 2D/third mode. These 2D modes are also important to characterize dissipative structures: these

structures, which look like vorticity/current sheets, are strongly elongated along the parallel direction and are therefore

mainly localized around the k‖ = 0 plane in Fourier space. If we assume that the dynamics of the 2D modes are similar

to the dynamics of two-dimensional strong turbulence, then it seems appropriate to consider that the time-scale entering

in the intermittency relation may be determined by [2] vℓ ∼ ℓ
1/4
⊥ , hence the value ∆ = 3/4. With this all considered, we

finally obtain the intermittency model:

ζp =
p

8
+ 1−

(

1

4

)p/2

. (2)

The model fits perfectly our direct numerical simulation [10]. Note that the parameter β in this model measures the degree

of intermittency: non-intermittent turbulence corresponds to β = 1 whereas the limit β = 0 represents an extremely

intermittent state in which the dissipation is concentrated in one singular structure. According to the value obtained here

β ≃ 1/4 (with C0 ≃ 1), we might conclude that weak MHD turbulence appear more intermittent than strong isotropic

MHD turbulence for which β = 1/3.

CONCLUSION

The key novel result in this work is that, for the first time, strong intermittency is shown to exist in such weakly interacting

systems. The intermittency, as manifested in the statistical scaling exponents ζ(p), is modelled with a log-Poisson law

which provides excellent agreement with the results from the simulations. This model, which is a based on the She-

Leveque type intermittency model [15] with additional physical insight from WT, allows one to make statements regarding

the topology of the structures responsible for the intermittency directly from the behaviour of the ζ(p) function. In the

case of our work where the 2D modes play a central role via the dissipative structures, the model shows that the topology

of these structures is highly parallel sheet-like.

Our results are important for the interpretation of plasma turbulence observations and provides objective insights to the

normally heated discussions on what constitutes turbulence in systems such as plasmas which host a rich variety of

waves and instabilities and at the same time are inherently nonlinear. The results of our work seem to suggest that the

quintessential signature of turbulence in the form of intermittency is not simply a property of strong turbulence but it may

also be found in a medium where WT is present. Incompressible MHD is a singular example in weak turbulence because

its dynamics, and so its existence, depends on the 2D modes. Since the 2D modes are responsible for intermittency, we

can conclude that intermittency will always be found in weak MHD turbulence. This fact has previously been ignored due

to the over-emphasis in the literature on spectra and the random phase approximation. Our simulations show that phase

synchronization plays an important role, even in WT, whilst retaining some of the exact analytical results pertaining to

spectra.
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