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Abstract A new system of governing equations for spherically-avedadescriptors, which allows to calculate incompressilole h
mogeneous turbulent flows, is derived in the present studynd®kable features of this model are that it makes a digimttetween
directional and polarization anisotropies, which aret#daseparately, and that no heuristic tuning of arbitramystants is required.
Spherical averaging allows to obtain a model for anisotrapibulence which is as versatile as the classical EddyfeahQuasi-
Normal Markovian (EDQNM) model for isotropic turbulences.ithis model can calculate anisotropic turbulent flowo#t ery high
and low Reynolds numbers, with good resolution of both lange small scales and over very long evolution times. Thesptanodel
is particulary suited for the study of shear-driven turbtifows and their return to isotropy.

CLOSED EQUATIONSFOR THE TWO-POINT SECOND-ORDER CORRELATION TENSOR

The present model is derived starting from the governingtqgn of the second-ordrer spectral tené@;(k:, t), which is

the Fourier transform of the two-point second-order catieh tensotR;; (r,t) = (u;(x, t)u;(x + r,t)), whereu;(z, t)

is the fluctuating velocity fieldr the vector separating the two points in physical space, hadperator) denotes
ensemble average. By virtue of incompressibility, thecbelfﬁj(k, t) can be generated from scalar spectra according to:

Rij(k,t) = E(k,t) Py (k) + R (Z(k, t)Ni(k)N;(k)) (1)

whereé&(k,t) is the energy density in 3D Fourier space, from which is gtiedtdirectional anisotropy, and (k, t)
characterizes polarization anisotrofy,; (k) denotes the projection operator onto the plan perpentitmfa and V; (k)
refers to the helical modes. By virtue of this decomposititre governing equation szij is equivalent to a set of
two equations in terms of and Z. These generalized Lin equations include exact termsaiiimeterms of€ and 7,
inherited from Rapid Distortion Theory, and call into playestral transfer terms denotdd®) (k,t) and 7% (k, 1),
which are mediated by third-order correlations and neecktoldsed. Nonlocal expression of the latter terms (in terms
of £ andZ?) is achieved by mean of an EDQNM closure assumption: it idiegipo the equation for three-point third-
order correlations. Quasi-Normal (QN) closure for fountider moments is corrected by an eddy-damping (ED) term,
assuming that the departure from Gaussianity is moderateasdfourth-order cumulants act as a relaxation of third-
order ones. Finally, a Markovianization (M) procedure, ethiliscards the explicit effets of production by mean-vityoc
gradients in third-order terms, is employed in order to mbti@ctable expressions fa@®) (k, t) andT (%) (k, t).

GOVERNING EQUATIONSFOR SPHERICALLY-AVERAGED DESCRIPTORS

The k dependence of (k, ¢) and Z(k, t) makes their governing equations, once closed, difficultdcsblived from a
practical point of view. In order to circumvent these diffices, one solution is to integrate analytically the lateer
a sphere of radius. This analytical integration requires a representatiomeftensod?ij(k,t). Here, we choose the
representation described in [1] which is written in term€ (%, ¢t) andZ(k, t) as:

E(k,t) kik; 5E(k t) 7(vol)

ity = 20! (1—15Hi(f")(k,t) k) : Z(k.t) = S HE (kN (k)N (k) @

Equation (2) involves the tensoféi(]‘.”")(k, t) andHi(f(’l)(k:, t) which depend only o and measure respectively direc-
tional and polarization anisotropies according to:

2B (k, t)H'™ (k, 1) / R (k,t)d%k 5 2B(k, t)H" (k. t) // RE (e, t)dk ®)
Sk Sk

WhereRz(;l”)(kz,t) andf%gf"l)(k, t) refer respectively to the directional and polarizatioripaf R;; (k, t). E(k,t) is the
kinetic energy spectrum anﬁlfsk d2k denotes integration over a spherical shell of radiushe degree of anisotropy
permitted by the representation (2) is restricted by radiiity requirements. Injecting this representation itite gener-
alized Lin equations allows to integrate analytically thidr over a sphere of radiésand to derive a system of equations



in terms of the spherically-averaged descriptb(g, ), H}j‘.i”)(k, t) andHi(j’.wl)(k, t). The latter completely determine
the second-order spectral tens?bg-(k, t), restricted to moderate anisotropy. The resulting sysseofi the form:

(% + 2uk2) E(k,t) = S"(k,t)+T(k,t) ; (% + 21/k:2) E(k, ) H™ (k,t) = SH (k, )+ 8 (k1) (4)

)

(% + 2y/<;2) E(k, ) HY™ (k,t) = SETD (k1) + S0 (&, 1) (5)

The tensorsS™ (k, t), Sg(d”)(k, t) andsg(p"l)(k, t) account for the interactions with the mean flow and derivenftbe
linear terms in the generalized Lin equations, whef@s ), SZ.];’L(”I") (k,t) andsg”p"l) (k,t) correspond to nonlinear
transfer terms and derive from the expressiong'6? (k,t) andT (%) (k, t) closed by the EDQNM approximation.

VALIDATION AND RESULTS

The predictions of the present model are compared with theréments of Gence and Mathieu ([2],[3]). In these studies,
two successive plane strains with different orientatioesapplied to grid-generated turbulence, and the retursotodpy
(RTI) of the turbulence thus obtained is investigated inldteer experiment. Experimental datas for the downstream
evolution of the invarianf{I = b;;b;;, whereb;; is the dimensionless deviatoric part of the Reynolds stessor, are
reported in figure 1 along with numerical results obtainethwhe system of governing equations (4)-(5). The latter
allows to correctly capture the evolution of anisotropy argbod agreement between experimental and numericalgesult
is observed, especially taking into account the uncestaimthe initial condition and a possible homogeneity faalt i
the experimental device. Some of these results can be peddiy the best ‘full RSM’ single-point models, but often
they need the addition of coupled structure tensors (iniite Kassinoset al, see [1, 5]). For instance, the directional

anisotropy tensoE(k,t)Hi(f”')(k,t) in eq. (3) gives the spectrum of their ‘dimensionality tens@ccordingly, the
prediction of such a sale-by-scalelfy k& here) information for distribution of energy and anisotrégpthe most interesting
added value of our model, as a true two-point one. Many othsiits will be presented and discussed, especially for non-
axisymmetric turbulence, possibly subjected to rotatiorean flows (e.g pure plane shear) among arbitrary meanityeloc

gradients for which our complete model equations are valid.
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Figure 1. Evolution of the invarianf I versus the position in the distorting duct of lendth for the experiments [2] (a) and [3] (b).
Symbols correspond to experimental datas and lines areebtwith the system of governing equations (4)-(5). Vasivalues of the
anglea between the principal axes of the two successive planenstesie investigatedi = 0 (0, ='=* ), a = g (4, yoa=7
(o, ), a =35 (A, == )anda = % (X, ).
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