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Abstract A new system of governing equations for spherically-averaged descriptors, which allows to calculate incompressible ho-
mogeneous turbulent flows, is derived in the present study. Remarkable features of this model are that it makes a distinction between
directional and polarization anisotropies, which are treated separately, and that no heuristic tuning of arbitrary constants is required.
Spherical averaging allows to obtain a model for anisotropic turbulence which is as versatile as the classical Eddy-Damped Quasi-
Normal Markovian (EDQNM) model for isotropic turbulence, i.e. this model can calculate anisotropic turbulent flows at both very high
and low Reynolds numbers, with good resolution of both largeand small scales and over very long evolution times. The present model
is particulary suited for the study of shear-driven turbulent flows and their return to isotropy.

CLOSED EQUATIONS FOR THE TWO-POINT SECOND-ORDER CORRELATION TENSOR

The present model is derived starting from the governing equation of the second-ordrer spectral tensorR̂ij(k, t), which is
the Fourier transform of the two-point second-order correlation tensorRij(r, t) = 〈ui(x, t)uj(x+ r, t)〉, whereui(x, t)
is the fluctuating velocity field,r the vector separating the two points in physical space, and the operator〈〉 denotes
ensemble average. By virtue of incompressibility, the tensor R̂ij(k, t) can be generated from scalar spectra according to:

R̂ij(k, t) = E(k, t)Pij(k) + ℜ (Z(k, t)Ni(k)Nj(k)) (1)

whereE(k, t) is the energy density in 3D Fourier space, from which is quantified directional anisotropy, andZ(k, t)
characterizes polarization anisotropy.Pij(k) denotes the projection operator onto the plan perpenticular to k andNi(k)

refers to the helical modes. By virtue of this decomposition, the governing equation of̂Rij is equivalent to a set of
two equations in terms ofE andZ. These generalized Lin equations include exact terms, linear in terms ofE andZ,
inherited from Rapid Distortion Theory, and call into play spectral transfer terms denotedT (E)(k, t) andT (Z)(k, t),
which are mediated by third-order correlations and need to be closed. Nonlocal expression of the latter terms (in terms
of E andZ) is achieved by mean of an EDQNM closure assumption: it is applied to the equation for three-point third-
order correlations. Quasi-Normal (QN) closure for fourth-order moments is corrected by an eddy-damping (ED) term,
assuming that the departure from Gaussianity is moderate sothat fourth-order cumulants act as a relaxation of third-
order ones. Finally, a Markovianization (M) procedure, which discards the explicit effets of production by mean-velocity
gradients in third-order terms, is employed in order to obtain tractable expressions forT (E)(k, t) andT (Z)(k, t).

GOVERNING EQUATIONS FOR SPHERICALLY-AVERAGED DESCRIPTORS

Thek dependence ofE(k, t) andZ(k, t) makes their governing equations, once closed, difficult to be solved from a
practical point of view. In order to circumvent these difficulties, one solution is to integrate analytically the latterover
a sphere of radiusk. This analytical integration requires a representation ofthe tensorR̂ij(k, t). Here, we choose the
representation described in [1] which is written in terms ofE(k, t) andZ(k, t) as:
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Equation (2) involves the tensorsH(dir)
ij (k, t) andH(pol)

ij (k, t) which depend only onk and measure respectively direc-
tional and polarization anisotropies according to:
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whereR̂(dir)
ij (k, t) andR̂(pol)

ij (k, t) refer respectively to the directional and polarization parts of R̂ij(k, t). E(k, t) is the
kinetic energy spectrum and

∫∫

Sk

d2k denotes integration over a spherical shell of radiusk. The degree of anisotropy
permitted by the representation (2) is restricted by realizability requirements. Injecting this representation intothe gener-
alized Lin equations allows to integrate analytically the latter over a sphere of radiusk and to derive a system of equations



in terms of the spherically-averaged descriptorsE(k, t), H(dir)
ij (k, t) andH(pol)

ij (k, t). The latter completely determine

the second-order spectral tensorR̂ij(k, t), restricted to moderate anisotropy. The resulting system is of the form:
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The tensorsSL(k, t), SL(dir)
ij (k, t) andSL(pol)

ij (k, t) account for the interactions with the mean flow and derive from the

linear terms in the generalized Lin equations, whereasT (k, t), SNL(dir)
ij (k, t) andSNL(pol)

ij (k, t) correspond to nonlinear

transfer terms and derive from the expressions ofT (E)(k, t) andT (Z)(k, t) closed by the EDQNM approximation.

VALIDATION AND RESULTS

The predictions of the present model are compared with the experiments of Gence and Mathieu ([2],[3]). In these studies,
two successive plane strains with different orientations are applied to grid-generated turbulence, and the return to isotropy
(RTI) of the turbulence thus obtained is investigated in thelatter experiment. Experimental datas for the downstream
evolution of the invariantII = bijbji, wherebij is the dimensionless deviatoric part of the Reynolds stresstensor, are
reported in figure 1 along with numerical results obtained with the system of governing equations (4)-(5). The latter
allows to correctly capture the evolution of anisotropy anda good agreement between experimental and numerical results
is observed, especially taking into account the uncertainty in the initial condition and a possible homogeneity fault in
the experimental device. Some of these results can be predicted by the best ‘full RSM’ single-point models, but often
they need the addition of coupled structure tensors (in linewith Kassinoset al., see [1, 5]). For instance, the directional
anisotropy tensorE(k, t)H

(dir)
ij (k, t) in eq. (3) gives the spectrum of their ‘dimensionality tensor’. Accordingly, the

prediction of such a sale-by-scale (k byk here) information for distribution of energy and anisotropy is the most interesting
added value of our model, as a true two-point one. Many other results will be presented and discussed, especially for non-
axisymmetric turbulence, possibly subjected to rotational mean flows (e.g pure plane shear) among arbitrary mean velocity
gradients for which our complete model equations are valid.
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Figure 1. Evolution of the invariantII versus the position in the distorting duct of lengthLd for the experiments [2] (a) and [3] (b).
Symbols correspond to experimental datas and lines are obtained with the system of governing equations (4)-(5). Various values of the
angleα between the principal axes of the two successive plane strains are investigated:α = 0 (�, ), α =

π
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