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Abstract We present data from direct numerical simulations of homogeneous isotropic decaying turbulence showing
both the non-equilibrium and the classical dissipation scalings reported in wind-tunnel experiments of both regular
and fractal grid-generated turbulence, i.e. Cε ∼ (Re0/Reλ)

n with n of order unity and Cε ∼ constant, respectively
(Re0 and Reλ are global and local Reynolds numbers). These two dissipation behaviours lead to different power-law
decay exponents in both regimes also in accord with the experiments. Finally, we show that in both regimes the
maximum non-linear energy cascade flux, Π, reasonably satisfies the classical expectation that Π ∼ K3/2/ℓ.

The classical empirical scaling, ε ∼ CεK
3/2/ℓ (where ε, ℓ, K and Cε are, respectively, the turbulent

kinetic energy dissipation per unit mass, the integral length-scale, the kinetic energy and an empiri-
cal constant) is “one of the cornerstone assumptions of turbulence theory” [7, 11]. However, over the
past half decade or so, there have been many reports of laboratory experiments on turbulence gener-
ated by regular and fractal grids showing regions of the turbulent flow where the classical empirical
scaling with Cε ≈ constant does not hold and is replaced by Cε ∼ (Re

1/2
M /Reλ)

n, with n ≈ 1 and
[5, 10, 6, 2, 3] (Reλ =

√
Kλ/ν and ReM = U∞M/ν where U∞ is the inlet velocity, M is an inlet mesh

size, λ ≡
√

10νK/ε is the Taylor microscale and ν is the kinematic viscosity of the fluid). However, in
grid-generated turbulence the region exhibiting the nonequilibrium behaviour is typically comprehended
between 3 and 20 mesh sizes (for the usual blockage ratios of 30% to 40%), which is closer to the grid
than the ‘rule-of-thumb’ of 30M beyond which the turbulent flow can safely be considered to be homoge-
neous and fully developed [1]. Perhaps non-surprisingly, much of the skepticism facing the experimental
evidence of the nonequilibrium behaviour is precisely the suspition of a non-negligible influence of in-
homogeneity and/or inertial range production as well as the possibility of the turbulence not being fully
developed [4, 2, 3].
Here we present data from direct numerical simulations of fully-developed decaying homogeneous and
isotropic turbulence reproducing the main results of the laboratory experiments without such confounding
effects. Contrary to virtually all previous direct numerical simulation of decaying turbulence, the initial
condition used for our turbulence decay simulations are velocity fields obtained from fully-developed
statistically steady turbulence rather than gaussian noise with a prescribed kinetic energy spectrum. One
of the datasets used here (with N = 5123 collocation points and Reλ ≈ 115 initially) has been presented
in Ref. [8] where further details on the simulations and on the numerical methods can be found as well as
further physical insight on the mechanisms at play. We complement the previous data with a larger initial
Reynolds number dataset (Reλ ≈ 180) with N = 10243 collocation points.
The evolution of the normalised energy dissipation against the local Reynolds number for both simula-
tions is shown in Fig. 1a where it can clearly be seen that the dissipation follows two different behaviours.
In the first regime from the initial instant to about four turnover times, Cε ∼ (Re0/Reλ)

1.2, and in the
second regime, Cε ≈ constant, until the Reynolds number becomes too small and low Reynolds number
effects begin to be felt (the lowest Reynolds numbers for the N = 5123 and N = 10243 DNSs are
Reλ ≈ 45 and Reλ ≈ 60, respectively). Our data also indicate that the maximum energy cascade flux,
Π, remains approximately proportional to K3/2/ℓ, although there is a small trend for its numerical value
to increase during the initial stages of decay which requires further investigation (Fig. 1a, see caption for
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Figure 1. a) Normalised energy dissipation Cε ≡ (3/2)5/2 εℓ/K3/2 and energy cascade flux CΠ ≡

(3/2)5/2 Πℓ/K3/2 versus the Reynolds number ratio Re0/Reλ. Re0 is a reference Reynolds number defined as
Re0 ≡

√
15C

−2/3
ε ε1/6ℓ2/3ν−1/2 corresponding to Reλ in a statistically steady state. The factor of (3/2)5/2 allows

for a direct comparison with experimental surrogates; b) Power-law, K = A(t+ t0)
−n, regressions for both ( )

non-equilibrium regime leading to t0/Tref = 6 and n = 3.5 and ( ) classical regime leading to t0/Tref = 0.7

and n = 1.4. K0 and Tref = ℓ0/
√
K0 are the initial kinetic energy and turnover time, respectively and tneq0 is the

virtual time origin for the non-equilibrium power-law fit. The data are fitted with the non-linear method discussed in
Ref. [9]. The exponents vary slightly with the data range, however, the exponents in the non-equilibrium period are
consistently larger (n > 2.5) than in the equilibrium period (n < 1.6).

definition of Cε and Re0).
The present data also confirms that the behaviour of the dissipation is the main cause for the steeper
decay exponents in the nonequilibrium regime. The conservation of a large-scale invariant together with
Cε ∼ (Re0/Reλ)

α uniquely determines the power-law decay exponent [9]. Based on our Cε data,
together with the range of possible large-scale invariants [9], leads to 1.7 ≤ n ≤ 4 for α = 1.2 and
6/5 ≤ n ≤ 10/7 for α = 0, which is consistent with the independently fitted power-laws (Fig. 1b).
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