
15TH EUROPEAN TURBULENCE CONFERENCE, 25-28 AUGUST, 2015, DELFT, THE NETHERLANDS

A NUMERICAL ANALYSIS OF DETAILED ENERGY TRANSFERS IN ELASTIC-WAVE
TURBULENCE

Naoto Yokoyama1 & Masanori Takaoka2
1Department of Aeronautics and Astronautics, Kyoto University, Kyoto, Japan

2Department of Mechanical Engineering, Doshisha University, Kyotanabe, Japan

Abstract Triad interaction functions in elastic-wave turbulence are numerically investigated to show detailed energy transfers due to
nonlinear interactions among wavenumbers. The energy exchange is active between the small-wavenumber stretching energy and the
large-wavenumber kinetic energy. It is indicated that these nonlocal interactions carry the energy from the small-wavenumber forcing
range to the large-wavenumber dissipation range.

INTRODUCTION

Elastic waves propagating in a thin elastic plate exhibit turbulent properties when the degree of freedom is large, and then
the system is called elastic-wave turbulence. In the elastic-wave turbulence, a (relatively) strongly nonlinear spectrum in
small wavenumbers and the weakly nonlinear spectrum in large wavenumbers coexist. [1, 2] Despite the coexistence, the
energy fluxes in both the strongly nonlinear regime and the weakly nonlinear regime are almost the same. [3] To see the
energy transfers due to the nonlinear interactions among wavenumbers in more detail, the energy transfers are visualized
by the triad interaction functions. The triad interaction functions represent the nonlinear energy transfer between kinetic
energy of a wavenumber and stretching energy of another wavenumber by the medium of the other wavenumber. The
mechanism of the energy transfer from a small-wavenumber energy-containing range to a large-wavenumber dissipation
range is also discussed.

RESULTS

The dynamics of elastic waves propagating in a thin plate is given by the Föppl-von Kármán (FvK) equation. Under the
periodic boundary condition, the FvK equation is written as
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where ζk, pk and χk are the Fourier coefficients of the displacement, of the momentum, and of the Airy stress potential,
respectively. The Young’s modulus E and the density ρ are the material quantities of an elastic plate. The frequency ωk

is given by the linear dispersion relation, ωk = (Eh2/(12(1− σ2)ρ))1/2 k2, where σ and h are respectively the Poisson
ratio and the thickness of the elastic plate.
The total energy of each mode Ek is the sum of the kinetic energy Kk, the bending energy Vbk, and the stretching energy
Vsk, i.e., Ek = Kk +Vbk +Vsk. [3] Here, Kk = |pk|2/(2ρ), Vbk = ρω2

k|ζk|2/2, Vsk = k4|χk|2/(2E). The total-energy
transfer is also decomposed as Tk = TKk +TVbk +TVsk, corresponding to each energy. The kinetic-energy transfer TKk

is further decomposed to the second-order transfer and the fourth-order transfer. The second-order kinetic-energy transfer
and the bending-energy transfer express the transmutation from kinetic energy to the bending energy and vice versa,
hence the second-order kinetic-energy transfer and the bending-energy transfer cancel each other out. Therefore, the
total-energy transfer is given as the sum of the the fourth-order kinetic-energy transfer and the stretching-energy transfer
as Tk = T

(4)
Kk + TVsk, where
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The kinetic-energy transfer and the stretching-energy transfer due to a triad interaction with k1 and k2 are defined as

T
(4)
Kkk1k2

=
|k1 × k2|2

2ρ
pkχk1ζk2δk+k1+k2,0 + c.c., TVskk1k2 = −|k1 × k2|2

2ρ
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The triad interaction function of the total energy is defined as Tkk1k2 = T
(4)
Kkk1k2

+ TVskk1k2 . The triad interaction
function Tkk1k2

is interpreted as the temporal rate of the energy increment at k due to the interaction among the three
wavenumbers k + k1 + k2 = 0. The triad interaction function of the total energy satisfies the detailed energy balance:
Tkk1k2

+Tk1k2k+Tk2kk1
= 0. Namely, the triad interaction conserves the sum of the energies of the three wavenumbers.
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Figure 1. Azimuthally-integrated triad interaction functions of kinetic energy due to a triad interaction with k1 for χ and k2 for ζ (a,
c), and stretching energy due to a triad interaction with k1 for ζ and k2 for p (b, d). (a, b): for k = 26π, and (c, d): for k = 144π.

Because a triangle is determined by the lengths of the three sides, the azimuthally-integrated triad interaction functions in
the statistically isotropic state are defined as
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where ∆k is the bin width to make the the azimuthal integration.
We performed a numerical simulation of the FvK equation (1), where the external forces and dissipation are added
respectively in the small wavenumbers (|k| ≤ 8π) and in the large wavenumbers (effective in the range |k| ⪆ 256π).
A statistically steady state is numerically obtained. In the statistically state, a (relatively) strongly nonlinear state in the
small wavenumber and the weakly nonlinear state in the large wavenumbers coexist, where the separation wavenumber is
roughly equal to 200.
Figure 1 shows the azimuthally-integrated triad interaction functions for k = |k| = 26π and 144π; the former is in the
strongly nonlinear small-wavenumber region, and the latter in the weakly nonlinear large-wavenumber region. Because
of the triangle inequality, the azimuthally-integrated triad interaction functions are defined only in the rectangular domain.
For k = |k| = 26π, large magnitudes of the kinetic-energy transfer appear around the left corner, where the wavenumbers
of χ is small and the wavenumbers of ζ is close to k. (Fig. 1(a)) Positive large values (≈ 1 × 103) are observed near
the corner, while negative large values (≈ −1 × 102) in the region k1 ≈ k2 ≈ k. Note that the range of the color
map is limited to the range from −1600 to 1600 for visibility. Because the bending-energy transfer does not contribute
to the energy budget among wavenumbers, ζ(k2) plays a mediating role. The local integral near the corner is positive.
Therefore, the kinetic energy of k = 26π is transferred from the stretching energy of k1 ≪ k. Conversely, the triad
interaction function of the stretching energy spreads over the rectangle domain, and the contribution from the large k1 and
k2 is significant. (Fig. 1(b)) The positive values appear in the range k1 > k2 ≫ k, while the negative values appear in
the range k2 > k1 ≫ k. Near the left corner k1 ≪ k, the triad interaction function of the kinetic energy for k = 144π
has positive large values in the region k2 < k of p, and negative large values in the region k2 > k. (Fig. 1(c)) The triad
interaction function of the stretching energy for the large wavenumbers has the significant contribution from the large k1
and k2 (Fig. 1(d)). Note that Figs. 1(a) and (b) and Figs. 1(c) and (d) are not substantially different, though the former
wavenumber is taken from the strongly nonlinear regime, and the latter from the weakly nonlinear regime.
The results of the triad interaction functions shown in Fig. 1 can be understood by the detailed balance of the energy.
The energy is transferred from the large-wavenumber kinetic energy to the small-wavenumber stretching energy, if the
wavenumber of the kinetic energy is smaller than the wavenumber of the displacement that mediates the triad interac-
tion. The energy is transferred from the small-wavenumber stretching energy, to the large-wavenumber kinetic energy if
the wavenumber of the kinetic energy is larger than the wavenumber of the displacement. These nonlocal interactions
between the small-wavenumber stretching energy and the large-wavenumber kinetic energy via the large-wavenumber
displacement can carry the energy from the small-wavenumber forcing range to the large-wavenumber dissipation range.
The energy transfer due to the nonlocal interactions will be compared with that due to the local interactions.
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