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SPECTRA OF TURBULENT ENERGY TRANSPORT IN CHANNEL FLOWS
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Abstract To reveal the scale-dependences of the transport of turbulent energy in a channel flow, the constituents of the budget equation
of turbulent energy for the Fourier modes of velocity fluctuations are computed by using direct numerical simulations. At each height in
the buffer and overlap regions, the transport in the wall-normal direction by the turbulent convection provides energy to the fluctuations
at small scales, but takes it away from those at large-scales. Furthermore, energy taken from the large-scales in the overlap region is
carried upward to the center of channel and also downward to the vicinity of the wall. This downward transport is expected to cause
the anomaly of the turbulent intensity and the constituents of the budget equation near the wall. The transport between scales and their
scaling will also be discussed in the talk.

BUDGET EQUATION FOR FOURIER MODES

The transport of turbulent energy plays a central role for maintaining statistically steady turbulent flows. In wall-bounded
flows, a net energy flux in the inhomogeneous wall-normal direction occurs, and it contributes to the budget of turbulent
energy at each height. Especially in the logarithmic layer, the flux is almost constant, and the production by the mean
shear and viscous dissipation balance in average although it is also known that the former slightly excesses the latter.[1]
However, this does not imply that the energy is transported uniformly at all the scales, but is done depending on scales, as
expected by considering the dynamics of turbulent structures.[2] In addition, the usual budget equation does not contain
any contribution from the transport between scales. In wall-bounded flows, anisotropic large-scale fluctuations exchange
energy in a more complicated manner than the small-scale isotropic ones. Recently, the energy fluxes in the combined
physical/scale space is deduced from an extended Kolmogorov equation.[3] Being motivated by their study, the present
one aims to extract the scale-dependences of the energy transport by employing a traditional Fourier spectral technique.
We consider the transport of turbulent energy in a fully developed turbulent channel flow. We use x, y, and z for the
streamwise, wall-normal, and spanwise coordinates. Let U(y) denote the mean streamwise velocity, and u, v, and w the
velocity fluctuations in the x, y, and z directions, respectively, and p the pressure fluctuation. The channel half width
is h. We may use u1, u2 and u3 interchangeably with u, v and w. The Fourier transform of ui(x, y, z) in the wall-
parallel directions is expressed by ûi(k, y), where k = (kx, kz) is the wavenumber-vector whose components are the
wavenumbers in the x and z directions. One may then derive the budget equation for the Fourier modes of the velocity
fluctuations, as follows,
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dûi(ûiv)∗

dy



 , T p

i (k, y) = ℜ

{
−
1

2
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and ∂1 = ikx, ∂2 = ∂/∂y and ∂3 = ikz . The over-line means a temporal average, and the superscript ‘*’ stands for the
complex conjugate. If the flow is statistically steady, the terms in the r.h.s. of (1) balance. Here P is the spectrum of the
production by the mean shear, T s

i is the spectrum of the transport between scales, T p
i is the spectrum of the transport in

the wall-normal direction by turbulent convection, Πi is the spectrum of the pressure term, and εi and Di are the viscous
dissipation and diffusion, respectively, where ν is the kinematic viscosity. Since

∑
k T s

i (k, y) = 0 for any y, this term
disappears in the usual budget equation which is obtained by summing the terms in eq. (1) over all the wavenumbers. An
advantage of eq. (1) is that the transport terms are given in the form of cospectra which represent their scale-dependences.

DIRECT NUMERICAL SIMULATIONS

Direct numerical simulations (DNSes) have enabled us to study the budget of turbulent energy quantitatively in detail.[4, 1]
DNSes of turbulent channel flows for several Reynolds numbers have been carried out to compute the constituents of the
spectral budget equation (1). The size of the numerical domain is Lx × Ly × Lz = 32πh × 2h × 2πh in common to
all the simulations. For spatial discretization, Fourier spectral method is employed for the wall-parallel directions, and



Nx ×Ny ×Nz ∆x+(= ∆z+), (∆y/η)max Tsuτ/h h+

C200 4096× 129× 256 5.07, 1.23 210 207
C500 8192× 257× 512 6.08, 1.17 34 496
C900 16384× 513× 1024 5.60, 0.914 2.0 ∗) 912

Table 1. Parameters of the simulations. The superscript ‘+’ means the normalization with a wall-unit. Here uτ is the friction velocity,
η the Kolmogorov’s length-scale. For the spatial resolution, grid spacings ∆x, ∆y and ∆z in the three directions are shown in a wall-
or viscous unit. The time interval used in analysis for each case is shown as Ts. ∗)An enough number of samples will be obtained by
the meeting.
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Figure 1. Premultiplied one-dimensional spectra kzT
p

1,1d as functions of λ+
z and y+ for (a) C200, (b) C500 and (c) C900. They are

normalized by the production at each height, and T
p

1,1d = 0 on the border between green (positive) and blue (negative) areas. Dashed
lines are the contours of Θp

1,1d = 0, and the arrows indicate the direction of the flux.

an 8th-order compact finite difference scheme on a nonuniform grid for the wall-normal one. A semi-implicit 3-step
3rd-order Runge-Kutta scheme was used for time marching. The numerical conditions are summarized in Table 1.

SPECTRA OF ENERGY TRANSPORT IN THE WALL-NORMAL DIRECTION

The scale-dependence of the transport of turbulent energy in the wall-normal direction is presented here. Figure 1 shows
the one-dimensional spectra of T p
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p
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as dashed lines. The transport T p
1 is positive at smaller, but is negative at larger spanwise scales in the buffer and overlap

layers. This means that fluctuations at small-scales receive energy from the lower ones while those at large-scales give it
to the upper ones, where the flux directs upward. It is found that the flux directs towards the center of channel above the
buffer layer at the most of scales, but may be opposite at very large scales. As Reynolds number is increased, the range
where the flux directs downward extends more into the overlap layer. This downward transport which carries energy
from the overlap layer to the buffer and viscous sublayer seems to cause the well-known anomaly of the wall-scaling of
the Reynolds stress and the constituents of the budget equation near the wall.[6, 5, 1] In addition, figures 1(b,c) indicate
the self-similarity of the eddies contributing to the spatial energy transport in the overlap layer, roughly in the range of
150 < y+ and y/h < 0.5.
As shown above, the spectral budget equation gives rich information on the transport of turbulent energy. We will discuss
the scale-dependence of T s

i as well as T p
i , and their scaling in the overlap region in the talk.
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