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Abstract Using direct numerical simulations of isotropic compressible turbulence driven by large-scale solenoidal force (up to 10243

grid points), we examine the Kolmogorov’s refined similarity hypotheses (RSH) as applied to active scalar, i.e. temperature, with
Prandtl number of order one. The three-dimensional compressible Navier-Stokes equations are solved by adopting a hybrid method for
space and a second-order Runge-Kutta technique for time. The stationary turbulent Mach number, Mt, and Taylor microscale Reynolds
number, Reλ, vary from 0.3 to 1.0 and 123 to 255, respectively. The two-dimensional contours of temperature dissipation field show
that at low Mt the field is dominated by vortices structures while at high Mt it is full of small-scale shocklets structures. When Reλ
increases, the random distribution of shocklets is reinforced, and thus, the field tends to local isotropy at small scales. According to
the scaling exponents obtained in our simulations, the probability distribution of the normalized temperature increment is basically the
same for the temperature fields, however, they are not close to Gaussian. Furthermore, the usage of the scaling exponents from standard
RSH theory [1,2] shows that the new probability distribution behaves rather different, suggesting the failure of RSH for temperature.

INTRODUCTION

Understanding the universal features of turbulence is a formidable problem in mathematics and physics. The original
K41 theory relied on the global average of energy dissipation rate to predict the scaling properties of energy spectrum
and others. Based on a set of refined similarity hypotheses (RSH), it was later extended to the K62 theory by considering
strong intermittency in local energy dissipation rate. Direct examinations of these hypotheses have been carried out
experimentally [3] and numerically [4]. Analyses of the RSH for passive scalar advected by incompressible turbulent
flows have been performed and examined by experimental and numerical data [1,2] as well. In compressible turbulence,
the temperature field has complicated nonlinear couplings with velocity field, and thus, is called as active scalar, which
belongs to fully nonlinear problems. In this study, we carry out numerical investigations on the following question:
whether the temperature in compressible turbulence, as an active scalar, obeys the RSH theory? More details on this study
can be found in Ref. 5.

NUMERICAL RESULTS

Figure 1 presents three two-dimensional contours of temperature dissipation field from the simulated flows of (Mt,
Reλ)=(0.3, 125), (1.0, 123) and (1.0, 255). It shows that in (a) the field is occupied by the randomly distributed vortices,
and there appear few discontinuities characterizing by shocklets. In (b) the obvious shocklets are in coexistence with
vortices, while in (c) the field is dominated by the small-scale shocklets, with random distribution. We find that as Reλ
increases, the field tends to local isotropy at small scales. In fact, the ensemble averages of skewness for the tempera-
ture dissipation rate are ⟨Sχ⟩ = −0.46, −1.22 and −0.71 for (a), (b) and (c), respectively. Here χ ≡ κ(∇Te)2 is the
temperature dissipation rate.
In our simulations, the scaling exponents computed from the conditionally averaged temperature increment, ⟨δrTe|χr,ϵr ⟩,
over the locally averaged kinetic energy dissipation rate ϵr and temperature dissipation rate χr, and the separation distance
between two points r are Zm, 0.5 and 1.0, respectively. Here the expression of Zm is obtained by data fitting.
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where a = 5 and b = 10. The normalized temperature increment is then defined as βs ≡ (δrTe|χr, ϵr)/(χ
1/2
r ϵZm

r r).
In the left panel of Figure 2 we plot the probability distribution function (PDF) of βs in the inertial range, where σs is
the standard derivation. It is found that the probability distribution is almost the same for the three simulated temperature
fields, implying some university of distribution. The discrepancy at large βs is possible caused by statistical variability.
However, the probability distribution significantly deviates from Gaussian even that βs is at small amplitudes. The right
panel of Figure 2 shows the PDF of another normalized temperature increment φs ≡ (δrTe|χr, ϵr)/(χ

1/2
r ϵ

−1/6
r r1/3),

which is defined according to the values of scaling exponents in Ref. 2. Here ϖs is the standard derivation of φs. We
observe that for each simulated temperature field, the probability distribution of φs is quite different. This reveals that the
classical RSH theory for passive scalar in incompressible turbulence fails to explain the active scalar like temperature in
compressible turbulence.



Figure 1. Two-dimensional contours of temperature dissipation field. (a) Mt = 0.3 and Reλ = 125; (b) Mt = 1.0 and Reλ = 123;
(c) Mt = 1.0 and Reλ = 255.

In summary, through simulations of isotropic compressible turbulence, we find that the Kolmogorov’s refined similarity
hypotheses are not applicable to temperature, which is an active scalar in compressible turbulence. The reason is that in
compressible turbulent flows the cascade of temperature is governed by the compressive component of velocity. In other
words, because of the motions of rarefaction and compression caused by shocklets, the temperature increment δrTe at
small scales is proportional to r by the Taylor expansion, rather than r1/3 by the Kolmogorov-Obukhov-Corrsin theory.
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Figure 2. Probability distribution of normalized temperature increment by its standard deviation in the inertial range. (a)
βs = (δrTe|χr,ϵr )/(χ

1/2
r ϵZm

r r), where Zm = 0.04 for Mt = 0.3, and Zm = −0.1 for Mt = 1.0; (b) φs =

(δrTe|χr,ϵr )/(χ
1/2
r ϵ

−1/6
r r1/3).
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