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Abstract 'While Kolmogorov’s similarity hypothesis suggests that velocity structure functions scale with the mean dissipation (£) and
the viscosity v, we find that the 2m. even order scales with (). This implies that there are other cut-off lengths than the Kolmogorov
length 7. These cut-off lengths are smaller than 7 and decrease with increasing order and Reynolds-number. They are compared to a
previous definition of order dependent dissipative scales by Schumacher et. al[4].

Although the governing equations for incompressible turbulent flows, the Navier-Stokes equations, are known for quite
some time, it is not possible to solve them analytically. For that reason, statistical methods are applied to arrive at a better
understanding of turbulent flows. In particular, correlation functions between two points separated by a distance r are of
interest, as they describe spatial properties of the flow. As turbulence is a multi-scale problem, correlation functions and
similar constructs are also suited to examine the properties of the flow at different scales. Kolmogorov[3] proposed two
similarity laws, namely that the statistics of structure functions (the velocity difference between two points separated by
a distance r) are determined by the viscosity v and the mean dissipation {¢) for locally isotropic turbulence for small
(first hypothesis of similarity), while for 7 situated between the very small scales and the large scales the dependence on
the viscosity v should vanish (second hypothesis of similarity). From the two quantities v and () relevant at the very
small scales, he introduced 7 = (v/ (¢))'/* and u,, = (v (£))'/? as characteristic length scale and velocity, inasmuch as
the second order structure function (the square of the velocity difference) should be completely determined by v, (¢) and
a (unknown) function f(r/n) for all r. In a second paper[2], he proceeded to rewrite the Karman-Howarth equation in
terms of the second order longitudinal structure function. This allowed him to give analytic solutions for the second order
structure function for » — 0 and the third order structure function in the inertial range n < r < L (under the assumption
of very large (infinite) Reynolds-number), where L is the inertial length scale.

Expanding the second order Dog = ((u1(2; + 7;) — uy(x;))?) for r — 0 gives
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where (¢) = 151 ((duy/dx1)?) due to isotropy has been used. Thus, the second order structure function collapses if
normalised with 1 and u,, for all Reynolds-numbers in the dissipative range.

Normalising with 7 and uf] yields

However, the fourth order Dy is determined by ((duy/dz1)*) (for r — 0) which can not be expressed in terms of (e)?
as the first similarity hypothesis would suggest. Rather, we find that Dy is collapsed by <€2>, Dgo by <53 > and so on.
This implies that higher orders are cut off at different length scales, namely
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It follows from eq. (3) that
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where (™) / (e)™ ~ Rei(m) with a(m+1) > a(m) > 0. Therefore, 1¢ 2., < 1 and that ratio increases with Reynolds-
number and order m. Figure 1 shows n¢ oy, for m = 1,..,5 and Rey = 88,..,529. As expected, we find indeed that
1c,2m decreases with increasing Reynolds-number and order m.

Under the assumption that velocity increments at large scales follow a Gaussian distribution, Schumacher et. al.[4] derived
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Figure 1. nc 2., as function of Rey. o m = 1 (i.e. the Kolmogorov scale ), Am =2,Vm =3,0m =4andom = 5.

where L is the integral length scale, Re, the large scale Reynolds-number and (,, the scaling exponent of the longitudinal
structure function of order n in the inertial range. Rewriting eq. (6) and using eq. (5) then results in
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Thus, from the Holder inequality (cf. Frisch[1]) we find that
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and with eq. (5) that 7¢ 2., approaches a constant for a given Reynolds-number. Consequently, we find a modified upper
limit of the number of required grid points for DNS simulations, i.e.
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compared to N ~ Rei/ * for K41 theory.
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