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Abstract Particles advected on the surface of a fluid can exhibit fractal clustering. The local structure of a fractal set is described by its
dimension D, which is the exponent of a power-law relating the mass A in a ball to its radius e: N ~ €”. It is desirable to characterise
the shapes of constellations of points sampling a fractal measure, as well as their masses. The simplest example is the distribution of
shapes of triangles formed by triplets of points, which we investigate for fractals generated by chaotic dynamical systems. The most
significant parameter describing the triangle shape is the ratio z of its area to the radius of gyration squared. We show that the proba-
bility density of z has a phase transition: P(z) is independent of € and approximately uniform below a critical flow compressibility 3.,
which we estimate. For 5 > . the distribution appears to be described by two power laws: P(z) ~ z%! when 1 > z > z.(¢), and
P(z) ~ z%? when z < zc(g).

INTRODUCTION

Fractal sets and measures play a pivotal role in many areas of physics [1, 2], including fluid dynamics, where it is known
that particles advected by complex flows often exhibit fractal clustering [3]. Fractals which have nearly identical values
of the dimension can have a very different appearance. It is desirable to develop means to characterise the shape of the
internal structure of fractal distributions, because differences in the local structure of fractal sets may have important
implications for properties such as light scattering [4] or network connectivity. Light scattering, for example, may be
strongly enhanced in some directions by specular effects if scatterers tend to align on planes or lines. Recently, a ‘spectal
dimension’ was defined which characterises anisotropy in the local structure of the fractal measures [5], but it is desirable
to find simpler descriptions of the local shapes of fractal sets.

Here we address the simplest question about the internal shape-structure of a fractal set. Consider two randomly chosen
particles in a ball of radius € surrounding a reference point. Together with the test point, these define a triangle. The local
structure can be described in greater detail by specifying the statistics of the shapes of these triangles.

We show that the distribution of triangle shapes is also associated with power-laws. It might be expected that the stretching
action of the dynamics will exaggerate the prevalence of thin, acute-angled triangles. This expectation is only partially
correct. We consider a one-parameter family of point fractals on the plane, and show that as the dimension is reduced
below two, the prevalence of acute triangles remains constant until a critical dimension is reached. Below this critical
dimension, the distribution of triangle shapes has a strong dependence upon dimension, and acute triangles become
predominant.

NUMERICAL STUDIES OF ADVECTED TRIANGLES

As a concrete example of a dynamical process which generates a fractal measure we consider particles advected in a
random flow in two dimensions [3]. This is the simplest case, but the techniques can be generalised to higher dimensions
and more complex dynamical equations. The equation of motion is © = w(r, t) where u(r, t) is a random velocity field.
In our numerical investigations we have used the map
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rather than a continuous flow. The velocity field u,, is chosen independently at each timestep, labelled by an integer n. It
is constructed from two scalar fields, namely a stream function v, (x, y) and a scalar potential x,, (z, y):
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Note that the flow is incompressible (div(u,,) = 0) when 8 = 0. For this reason 3 is termed the compressibility parameter
of the flow. See [6] for full details of the model.

Our discussion of the triangle shapes will emphasise the coordinate z, defined as follows. Let A be the signed area of a
triangle and R be the radius of gyration, then we write:
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Figure 1. Probability density P(z) for various compressibilities 3 including two special values: 3. = 1/4/29 = 0.185... is our
estimate of the critical compressibility, and 3; = 1/+/5 = 0.447 . .. is the compressibility at which the correlation dimension satisfies
D, = 1. Straight lines indicate estimates for o; and a2 when § = 1/+/5. Note that P(z) is normalisable (c; > —1) even at
B1 = 1//5, where Dy = 1

where the §7; are displacements of two points relative to the third, reference, point. Note that z may be negative, because
A is defined via a vector product. The equilibrium distribution of diffusion on a spherical surface is a uniform probability
density, corresponding to a uniform probability density for z. For a random scatter of points, Kendall [7] (see also [8])
showed that z has a uniform distribution on [—1,1]: P(2) = % Note that thin, acute triangles correspond to small values
of z. We concentrate upon the distribution P(z) in the limit as z — 0.

Figure 1 shows the numerically determined distribution of z for small triangular constellations formed by triplets of ran-
domly chosen points inside a disc of radius ¢ < £. The plots show the probability distribution P(z) for particles advected
in six different random flows, with increasing values of the compressibility parameter /3. In each case the probability dis-
tributions P(z) are shown on double-logarithmic scales, for eight different values of . For small compressibility /3, the
distribution is approximately independent of the value of € and uniform (apart from a cusp at z = 1 which arises because
our sampling criterion is different from Kendall’s, in that we require that the three points lie inside a disc of radius ¢).
When 3 exceeds a critical value ., P(z) becomes dependent upon &. It appears to be asymptotic to two power laws in
the limit as e — 0: P(z) ~ 2! when z is small, but exceeds a value z.(¢) which decreases as ¢ — 0, and P(z) ~ 2%2
for z < z..

ANALYSIS

The presentation, based upon a recently published paper [6], will describe an analytical theory which explains the sur-
prising phase transition illustrated in figure 1. It discusses why P(z) has power-law behaviour, why there is a critical
compressibility 3., and why the distribution P(z) may have two exponents for 5 > ..
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