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Abstract Since direct simulations of the incompressible Naviek8soequations are limited to relatively low-Reynolds nurape
dynamically less complex mathematical formulations areessary for coarse-grain simulations. Eddy-viscosity efodbr Large-
Eddy Simulation is probably the most popular example tHerdwey rely on differential operators that should be ablecapture
well different flow configurations (laminar and 2D flows, neaall behavior, transitional regime...). Most of them asséd on the
combination of invariants of a symmetric second-orderdetisat is derived from the gradient of the resolved velo@igyd. In the
present work, they are presented in a framework where athtigels are represented as a combination of elements of a&fe gipace
of invariants. In this way, new models can be constructedhigyosing appropriate restrictions in this space. The perdoice of the
proposed models is successfully tested for a turbulentreidiow.

THEORY: A 5D PHASE SPACE FOR EDDY-VISCOSITY MODELS

Due to its inherent simplicity and robustness, the eddgesgy assumption is by far the most popular closure to model
the subgrid-scales in Large-Eddy Simulation. In order tdrbme invariant, they are usually based on the combination
of invariants of a symmetric second-order tensor that dépem the gradient of the resolved velocity field,= V.
This second-order traceless tengof() = V - © = 0, contains8 independent elements and can be characterizéd by
invariants 8 scalars are required to specify the orientation in 3D).dwailhg the same notation as in [1], this set of five
invariants can be defined as follows

{Qc. Ra, Qs, Rs, V?}, (1)

whereQ 4 = 1/2{tr?(A)—tr(A?)} andR4 = det(A) representthe second and third invariants of the seconei-tedsor
A, respectively. Moreover, the first invariant dfis denoted a$’>4 = tr(A). Finally, V2 is equal to thel.2-norm of the
vortex-stretching vector,e. V2 = 4(tr(S%0?) — 2QsQq) = |Sw|? > 0, whereS = 1/2(G + GT), Q = 1/2(G - GT)
andw = V x u. Starting from the classical Smagorinsky model [5] thatieea

yéS'mag = (CsA)?|S(m)| = 2(CSA)2(—QS)1/27 @

existing models can be re-written in terms of the 5D phaseespafined in (1). For instance, the WALE [3] and the
Vreman’s model [8] respectively read

W 2 (V2/2 +2/3Q%) e ( V24 Q2 )”2
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whereQq = Q¢ — Qs. The major drawback of the Smagorinsky model is that thesdbfitial operator it is based on
does not vanish in near-wall regions (see Figure 1, rights possible to build models based on invariants withoug thi
limitation. Examples thereof are the WALE, the Vreman'g Yferstappen’s and themodel (see also Figure 1, right).

BUILDING PROPER INVARIANTSFOR EDDY-VISCOSITY MODELS

At this point, it is interesting to observe that new models b& derived by imposing restrictions on the differential
operators they are based on. For instance, let us considilsthat are based on the invariants of the teG&6F

Ve = (CMA)QPqu*QégTREGTa where —6r —4q—2p=—1; 67 + 2q = s, (4)

andPger = 2(Qq — Qs), Qagr = V? + Q% andRger = R, respectively. The above-defined restrictions on the
exponents follow by imposing th@—!] units of the differential operator and the slopefor the asymptotic near-wall
behavior (see Figure 1, right)e. O(y*). Solutions forg(p,s) = (1 — s)/2 — p andr(p,s) = (2s — 1)/6 + p/3 are
displayed in Figure 1. The Vreman’s model given in Eq.(3yesponds to the solution with = 1 (see Figure 1) and

r = 0. However, it seems more appropriate to look for solutiorth wie proper near-wall behaviag. s = 3 (solid lines

in Figure 1). Restricting to solutions involving only twovariants, the three models (also represented in Figurdldjfo

VESBQP = (Cs3qu)2PC:é/TQQ?C);/C2;T; VEBRP = (CSBTpA)QPC:Cl;TRé/éTQ VEBRQ = (0537‘qA)2Q8éTR5G/C6;T7 (5)
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Figure 1. Left: Solutions for the linear system of Egs.(4) for= 1 (dashed line) and = 3 (solid line). Each(r, g, p) solution
represents an eddy-viscosity model of the form given in&gqRight: near-wall behavior and units of the five basic ifamts in the
5D phase space given in (1) and the invari@at = Q¢ — Qs together with the near-wall behavior of several eddy-\s#tganodels.
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Figure 2. Results for a turbulent channel flow &e, = 395 obtained with a32% mesh for LES and &6° mesh without model,
i.e.v. = 0. Solid line corresponds to the DNS by Mostral. [2].

where the model constants,s,.,., can be related with the Vreman'’s constarit;,., with the following inequality

(OVT)2 VéSSmm
0< —— <
o (05311)2 I/XT o

3 ©)

Hence, imposing’sspq = Cospr = Cszgr = V/3Cy,. guarantees both numerical stability and that the models lems or
equal dissipation than Vreman’s moded, 0 < v53** < v¥". Figure 2 shows the performance of the proposed models
for a turbulent channel flow in conjunction with the disczation methods for eddy-viscosity models proposed in [6].
Compared with Vreman’s model, they improve the results treawall.
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