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Abstract An energy-spectrum bottleneck, a bump in the turbulence spectrum between the inertial and dissipation ranges, is shown to

occur in the non-turbulent, one-dimensional, hyperviscous Burgers equation and found to be the Fourier-space signature of oscillations

in the real-space velocity, which are explained by boundary-layer-expansion techniques. Pseudospectral simulations are used to show

that such oscillations occur in velocity correlation functions in one- and three-dimensional hyperviscous hydrodynamical equations that

display genuine turbulence.

INTRODUCTION

The energy spectrum E(k) characterizes the statistical distribution of kinetic energy among the wavenumbers k in ho-

mogeneous, isotropic, fluid turbulence in three dimensions (3D). If kI and kd denote, respectively, the wave-vector mag-

nitudes related to the inverses of the lengths LI , at which energy is injected into the system, and ηd, where viscous

dissipation becomes significant, then, in the inertial range kI ≪ k ≪ kd, this spectrum scales as E(k) ∝ k−n; the phe-

nomenological theory (K41) of Kolmogorov [1], which does not account for intermittency [2], yields n = 5/3 for 3D fluid

turbulence. In the far dissipation range k ≫ kd, this spectrum falls off exponentially (upto algebraic prefactors) [3]. For

values of k that lie in between inertial and far-dissipation ranges, a plot of the compensated energy spectrum (E(k) divided

by its inertial-range form) versus k exhibits a gentle maximum that is called a bottleneck [4, 5]. Such bottlenecks have

been seen in a variety of experiments [6, 7] and in direct numerical simulations (DNSs) of fluid turbulence [7, 8, 9, 10].

Phenomenological mechanisms have been suggested for the formation of bottlenecks (see, e.g., Refs. [4, 5]). A systematic

theoretical study of the bottleneck phenomenon has been initiated in Ref. [11] by using the limit of high dissipativity α in

hyperviscous hydrodynamical equations, which have a dissipation operator ∝ (−∇2)α. Hyperviscous dissipation, with

moderate values of α, say between 2 and 4, is often used in DNSs in the hope of enhancing the inertial range of scales,

but at the price of producing increasingly strong bottlenecks (see Ref. [11] and references therein).

RESULTS

In the first part of our study we develop a quantitative, analytical understanding of bottlenecks, for moderate values of α,

in the following hyperviscous generalization of the one-dimensional (1D) Burgers equation:

∂tu+ u∂xu = −ναk
−2α

r
(−∂2

x
)αu+ f(x, t); (1)

here u(x, t) is the velocity at the point x and time t, να > 0 the hyperviscosity, kr a reference wavenumber, and f the

driving force. It is well known that the ordinary (α = 1) Burgers equation, with f = 0, is integrable [12]; it is also

easy to show that its energy spectrum has no bottleneck. By contrast, we show that, for any integer α > 1, the solution

to the hyperviscous Burgers equation (1), in the limit of small να, displays an energy-spectrum bottleneck; for this it is

crucial to examine the solution in real space, where we can use boundary-layer-type analysis, in the vicinities of shocks,

to uncover oscillations in the velocity profile. We obtain this result both for the unforced, hyperviscous Burgers equation

and for its variant (DHB) with deterministic, time-independent, large-scale forcing. We validate our DHB solutions with

a pseudospectral DNS. Note that these solutions are time-independent and not turbulent; however, the key qualitative

feature of real-space oscillations in the velocity profile does carry over to oscillations in velocity correlation functions in

one- and three-dimensional hyperviscous hydrodynamical equations that display genuine turbulence. We show this in the

second part of our study by using DNS. This association of bottlenecks and oscillations in velocity correlation functions

has not been made so far. It is akin to the association of peaks in the static structure factor S(k), of a liquid in equilibrium,

with damped oscillations in the radial distribution function g(r) [13].
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Figure 1. (a) Log-log plot of the compensated energy spectrum k
5/3

E(k) versus k for the stochastically forced hyperviscous Burgers

(SHB) equation with α = 8 and (inset) a plot of its correlation function 〈u(x)u(x+l)〉 showing oscillations of wavelength λ
SHB

8 , which

is inversely related to the wavenumber of the bottleneck in the energy spectrum. (b) The compensated energy spectrum k
5/3

E(k) for

the 3D HNS equation (α = 4) with a bottleneck peak at wavenumber KHNS

b,α = 40. (c) A plot of the correlation function D(l) versus l

for the 3D HNS equation; inset: oscillations in a plot of the function D
o(l), which we obtain by subtracting the linear, decaying trend

from D(l).
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