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Abstract In the current study we aim to go beyond the dissipative description of turbulent flows that is provided by eddy viscosity
models for large-eddy simulation. As a starting point, we consider a general subgrid-scale model that is nonlinear in the velocity gradient.
To reduce the number of degrees of freedom of the model, we propose a first-principles-based procedure to find a minimal representation
of subgrid-scale stresses. Then, several criteria to determine the dependence of model coefficients on flow properties are detailed.
Ultimately, this would lead to a better understanding of the role of different nonlinear model terms in the description of turbulent flows.

INTRODUCTION

We study the construction of subgrid-scale models for large-eddy simulation of incompressible turbulent flows. In large-
eddy simulation one seeks to predict the behavior of the larger scales of motion within a flow field. Usually, the distinction
between large and small scales is made by a filtering or coarse-graining operation, and the evolution of the large-scale
velocity field is given by the filtered Navier-Stokes equations,
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Here, the subgrid-scale stress tensor, τ , represents the interactions between large and small scales of motion. As it is not
solely expressed in terms of the large-scale, filtered velocity field it cannot be resolved in a numerical simulation and it has
to be modeled. The subgrid-scale models we consider here depend on the filtered rate-of-strain and rate-of-rotation tensors,

sSij “
1

2
p
Bsui
Bxj

`
Bsuj
Bxi

q, sΩij “
1

2
p
Bsui
Bxj

´
Bsuj
Bxi

q. (2)

EXAMPLES OF SUBGRID-SCALE MODELS

Based on the idea that small-scale turbulent motions effectively cause diffusion of the larger scales, in eddy viscosity
models the off-diagonal subgrid-scale stresses are often taken proportional to the rate of strain,

τmodel ´ 1
3 TrpτmodelqI “ ´2νe sS. (3)

When the eddy viscosity, νe, is chosen properly, this model captures the net transfer of energy from large to small
scales, sometimes referred to as the subgrid-scale dissipation. Unless νe is taken negative, however, the reverse process
of backscatter cannot be captured. Furthermore, the model incorrectly imposes alignment of the eigenvectors of the
subgrid-scale stresses with those of the rate-of-strain tensor [6].
A different subgrid-scale model, which can be constructed by approximating the filtering operation in the subgrid-scale
stress tensor, is the gradient model. In terms of the filtered rate of strain and rate of rotation it is given by

τmodel “ CpsS2 ´ sΩ2 ´ psSsΩ´ sΩ sSqq. (4)

In several a priori studies it has been shown to capture the eigenvector orientations of the actual subgrid-scale stresses
better [6]. Also, there are suggestions that it is this tensor structure, rather than a negative eddy viscosity, that is related to
backscatter [2]. The gradient model has its deficiencies, however. It is inherently unstable as it does not transport enough
energy to smaller scales. Usually this problem is remedied by taking a linear combination of the above models, resulting in
a mixed model by which forward and backward scatter can be represented. [9]

A GENERAL NONLINEAR SUBGRID-SCALE MODEL

Motivated by the results provided by mixed models, we consider a general subgrid-scale model that is nonlinear in the
velocity gradient. It is constructed by assuming that the subgrid-scale stress tensor can be expressed as a function of the
filtered rate-of-strain and rate-of-rotation tensors, sS and sΩ. From the Cayley-Hamilton theorem it then follows that the
model can be represented by the linear combination [3],

τmodel “ αiTi, (5)



of a finite number of tensors,
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The coefficients, αi , may depend on the following invariants of sS and sΩ,
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FINDING A MINIMAL REPRESENTATION OF SUBGRID-SCALE STRESSES

The general model of Eqs. (5)–(7) is expected to allow for a better representation of subgrid-scale stresses than the eddy
viscosity and gradient models, especially in wall-bounded and rotating flows. Containing as many as eleven adjustable
constants, the model seems to be unnecessarily complicated, however. Indeed, as Lund and Novikov [3] remark, in most
cases, only six out of the eleven tensors suffice to describe the degrees of freedom of the subgrid-scale stress tensor.
So far, in practical model tests, a smaller subset of the above model terms is used. For instance, Marstorp et al. [4] derive a
model consisting of three basis tensors from the evolution equation of the deviatoric part of the subgrid-scale stress tensor.
Wang and Bergstrom [8] take a different set of four terms. For an extensive review of the use of these and similar nonlinear
models in the RANS community, see [1].
In the present work, rather than discarding any of the above tensors, we will extend the analysis of [1] and [3], and perform
a Gram-Schmidt orthogonalization process to isolate all independent contributions, say T 1

i . These are then used to form a
minimal representation of the subgrid-scale stresses, that is, a model of the form α1

iT
1
i consisting of the smallest set of

tensors that contains the same number of degrees of freedom as τ . For this minimal representation, we look to determine
the functional dependence of the model coefficients, α1

i, on flow properties, based on analytical considerations.
The work by Vreman [7] shows how this can be done for the term linear in sS. He investigates the subgrid dissipation of the
actual subgrid-scale stress tensor and demands that for all flows for which it is zero, also the model subgrid dissipation
vanishes. In formula form,

τij sSij “ 0 Ñ τmodelij
sSij “ 0. (8)

We propose to extend this first-principles analysis to the case of the general nonlinear model by requiring that the modeled
subgrid-scale force vanishes for all flow locations at which there is no actual subgrid-scale force,
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Other analytical criteria to restrict the model coefficients are under study, such as the preservation of well-known symmetries
of the Navier-Stokes equations [5]. Also, a priori model tests are planned to determine the magnitude of the different
model terms in canonical turbulent flows.
Ultimately, the construction of a nonlinear model that is based on a minimal representation of subgrid-scale stresses and
the knowledge of the dependence of its coefficients on flow properties would lead to a better understanding of the physics
represented by each of the model terms and of their role in the description of turbulent flows.
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