GOING BEYOND EDDY VISCOSITY: FINDING A MINIMAL REPRESENTATION OF SUBGRID-SCALE STRESSES IN LARGE-EDDY SIMULATION

Maurits Silvis & Roel Verstappen

Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, The Netherlands

<u>Abstract</u> In the current study we aim to go beyond the dissipative description of turbulent flows that is provided by eddy viscosity models for large-eddy simulation. As a starting point, we consider a general subgrid-scale model that is nonlinear in the velocity gradient. To reduce the number of degrees of freedom of the model, we propose a first-principles-based procedure to find a minimal representation of subgrid-scale stresses. Then, several criteria to determine the dependence of model coefficients on flow properties are detailed. Ultimately, this would lead to a better understanding of the role of different nonlinear model terms in the description of turbulent flows.

INTRODUCTION

We study the construction of subgrid-scale models for large-eddy simulation of incompressible turbulent flows. In largeeddy simulation one seeks to predict the behavior of the larger scales of motion within a flow field. Usually, the distinction between large and small scales is made by a filtering or coarse-graining operation, and the evolution of the large-scale velocity field is given by the filtered Navier-Stokes equations,

$$\frac{\partial \bar{u}_i}{\partial x_i} = 0, \qquad \qquad \frac{\partial \bar{u}_i}{\partial t} + \frac{\partial}{\partial x_j} \left(\bar{u}_i \bar{u}_j \right) = -\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_i} + \nu \frac{\partial^2 \bar{u}_i}{\partial x_j \partial x_j} - \frac{\partial}{\partial x_j} \left(\underbrace{\overline{u_i u_j} - \bar{u}_i \bar{u}_j}_{\tau_{ij}} \right). \tag{1}$$

Here, the subgrid-scale stress tensor, τ , represents the interactions between large and small scales of motion. As it is not solely expressed in terms of the large-scale, filtered velocity field it cannot be resolved in a numerical simulation and it has to be modeled. The subgrid-scale models we consider here depend on the filtered rate-of-strain and rate-of-rotation tensors,

$$\bar{S}_{ij} = \frac{1}{2} \left(\frac{\partial \bar{u}_i}{\partial x_j} + \frac{\partial \bar{u}_j}{\partial x_i} \right), \qquad \bar{\Omega}_{ij} = \frac{1}{2} \left(\frac{\partial \bar{u}_i}{\partial x_j} - \frac{\partial \bar{u}_j}{\partial x_i} \right). \tag{2}$$

EXAMPLES OF SUBGRID-SCALE MODELS

Based on the idea that small-scale turbulent motions effectively cause diffusion of the larger scales, in eddy viscosity models the off-diagonal subgrid-scale stresses are often taken proportional to the rate of strain,

$$\tau^{model} - \frac{1}{3} \operatorname{Tr}(\tau^{model}) I = -2\nu_e \bar{S}.$$
(3)

When the eddy viscosity, ν_e , is chosen properly, this model captures the net transfer of energy from large to small scales, sometimes referred to as the subgrid-scale dissipation. Unless ν_e is taken negative, however, the reverse process of backscatter cannot be captured. Furthermore, the model incorrectly imposes alignment of the eigenvectors of the subgrid-scale stresses with those of the rate-of-strain tensor [6].

A different subgrid-scale model, which can be constructed by approximating the filtering operation in the subgrid-scale stress tensor, is the gradient model. In terms of the filtered rate of strain and rate of rotation it is given by

$$\tau^{model} = C(\bar{S}^2 - \bar{\Omega}^2 - (\bar{S}\bar{\Omega} - \bar{\Omega}\bar{S})). \tag{4}$$

In several *a priori* studies it has been shown to capture the eigenvector orientations of the actual subgrid-scale stresses better [6]. Also, there are suggestions that it is this tensor structure, rather than a negative eddy viscosity, that is related to backscatter [2]. The gradient model has its deficiencies, however. It is inherently unstable as it does not transport enough energy to smaller scales. Usually this problem is remedied by taking a linear combination of the above models, resulting in a mixed model by which forward and backward scatter can be represented. [9]

A GENERAL NONLINEAR SUBGRID-SCALE MODEL

Motivated by the results provided by mixed models, we consider a general subgrid-scale model that is nonlinear in the velocity gradient. It is constructed by assuming that the subgrid-scale stress tensor can be expressed as a function of the filtered rate-of-strain and rate-of-rotation tensors, \overline{S} and $\overline{\Omega}$. From the Cayley-Hamilton theorem it then follows that the model can be represented by the linear combination [3],

$$\tau^{model} = \alpha_i T_i,\tag{5}$$

of a finite number of tensors,

$$T_{0} = I, T_{3} = \overline{\Omega}^{2}, T_{7} = \overline{\Omega}\overline{S}\overline{\Omega}^{2} - \overline{\Omega}^{2}\overline{S}\overline{\Omega}, \\ T_{1} = \overline{S}, T_{4} = \overline{S}\overline{\Omega} - \overline{\Omega}\overline{S}, T_{8} = \overline{S}\overline{\Omega}\overline{S}^{2} - \overline{S}^{2}\overline{\Omega}\overline{S}, \\ T_{2} = \overline{S}^{2}, T_{5} = \overline{S}^{2}\overline{\Omega} - \overline{\Omega}\overline{S}^{2}, T_{9} = \overline{S}^{2}\overline{\Omega}^{2} + \overline{\Omega}^{2}\overline{S}^{2}, \\ T_{6} = \overline{S}\overline{\Omega}^{2} + \overline{\Omega}^{2}\overline{S}, T_{10} = \overline{\Omega}\overline{S}^{2}\overline{\Omega}^{2} - \overline{\Omega}^{2}\overline{S}^{2}\overline{\Omega}.$$

$$(6)$$

The coefficients, α_i , may depend on the following invariants of \bar{S} and $\bar{\Omega}$,

$$I_1 = \operatorname{Tr}(\bar{S}^2), \qquad I_3 = \operatorname{Tr}(\bar{S}^3), \qquad I_5 = \operatorname{Tr}(\bar{S}^2\bar{\Omega}^2), I_2 = \operatorname{Tr}(\bar{\Omega}^2), \qquad I_4 = \operatorname{Tr}(\bar{S}\bar{\Omega}^2), \qquad I_6 = \operatorname{Tr}(\bar{S}^2\bar{\Omega}^2\bar{S}\bar{\Omega}).$$
(7)

FINDING A MINIMAL REPRESENTATION OF SUBGRID-SCALE STRESSES

The general model of Eqs. (5)–(7) is expected to allow for a better representation of subgrid-scale stresses than the eddy viscosity and gradient models, especially in wall-bounded and rotating flows. Containing as many as eleven adjustable constants, the model seems to be unnecessarily complicated, however. Indeed, as Lund and Novikov [3] remark, in most cases, only six out of the eleven tensors suffice to describe the degrees of freedom of the subgrid-scale stress tensor.

So far, in practical model tests, a smaller subset of the above model terms is used. For instance, Marstorp et al. [4] derive a model consisting of three basis tensors from the evolution equation of the deviatoric part of the subgrid-scale stress tensor. Wang and Bergstrom [8] take a different set of four terms. For an extensive review of the use of these and similar nonlinear models in the RANS community, see [1].

In the present work, rather than discarding any of the above tensors, we will extend the analysis of [1] and [3], and perform a Gram-Schmidt orthogonalization process to isolate all independent contributions, say T'_i . These are then used to form a minimal representation of the subgrid-scale stresses, that is, a model of the form $\alpha'_i T'_i$ consisting of the smallest set of tensors that contains the same number of degrees of freedom as τ . For this minimal representation, we look to determine the functional dependence of the model coefficients, α'_i , on flow properties, based on analytical considerations.

The work by Vreman [7] shows how this can be done for the term linear in \overline{S} . He investigates the subgrid dissipation of the actual subgrid-scale stress tensor and demands that for all flows for which it is zero, also the model subgrid dissipation vanishes. In formula form,

$$\tau_{ij}\bar{S}_{ij} = 0 \to \tau_{ij}^{model}\bar{S}_{ij} = 0.$$
(8)

We propose to extend this first-principles analysis to the case of the general nonlinear model by requiring that the modeled subgrid-scale force vanishes for all flow locations at which there is no actual subgrid-scale force,

$$\frac{\partial}{\partial x_j} \tau_{ij} = 0 \to \frac{\partial}{\partial x_j} \tau_{ij}^{model} = 0.$$
(9)

Other analytical criteria to restrict the model coefficients are under study, such as the preservation of well-known symmetries of the Navier-Stokes equations [5]. Also, *a priori* model tests are planned to determine the magnitude of the different model terms in canonical turbulent flows.

Ultimately, the construction of a nonlinear model that is based on a minimal representation of subgrid-scale stresses and the knowledge of the dependence of its coefficients on flow properties would lead to a better understanding of the physics represented by each of the model terms and of their role in the description of turbulent flows.

References

- T.B. Gatski and T. Jongen. Nonlinear eddy viscosity and algebraic stress models for solving complex turbulent flows. Prog. Aerosp. Sci., 36:655–682, 2000.
- [2] K. Horiuti. Alignment of eigenvectors for strain rate and subgrid-scale stress tensors. In B.J. Geurts, R. Friedrich, and O. Métais, editors, Direct and Large-Eddy Simulation IV, 8 of ERCOFTAC Series, pages 67–72. Springer Netherlands, 2001.
- [3] T.S. Lund and E.A. Novikov. Parameterization of subgrid-scale stress by the velocity gradient tensor. CTR Ann. Res. Briefs, pages 27–43, 1992.
- [4] L. Marstorp, G. Brethouwer, O. Grundestam, and A.V. Johansson. Explicit algebraic subgrid stress models with application to rotating channel flow. J. Fluid Mech., 639:403–432, 2009.
- [5] D. Razafindralandy, A. Hamdouni, and M. Oberlack. Analysis and development of subgrid turbulence models preserving the symmetry properties of the Navier–Stokes equations. Eur. J. Mech. B-Fluid., 26:531–550, 2007.
- [6] B. Tao, J. Katz, and C. Meneveau. Statistical geometry of subgrid-scale stresses determined from holographic particle image velocimetry measurements. J. Fluid Mech., 457:35–78, 2002.
- [7] A.W. Vreman. An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications. *Phys. Fluids*, **16**:3670–3681, 2004.
- [8] B.-C. Wang and D.J. Bergstrom. A dynamic nonlinear subgrid-scale stress model. Phys. Fluids, 17:035109, 2005.
- [9] G.S. Winckelmans, A.A. Wray, O.V. Vasilyev, and H. Jeanmart. Explicit-filtering large-eddy simulation using the tensor-diffusivity model supplemented by a dynamic Smagorinsky term. *Phys. Fluids*, 13:1385–1403, 2001.