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Abstract In this contribution we study the clustering of inertial ficles using a periodic kinematic simulation. The systémiaa-
grangian tracking of particles makes it possible to idgrttie particles’ clustering patterns for different valuéparticle’s inertia and
drift velocity. The different cases are characterised [ffedint pairs of Stokes numbélt and drift parametet. For the present study
0 < St < 1and0 < v < 2. The main focus is to identify and then quantify the clustgrttractor - when it exists - that is the set of
points in the physical space where the particles settle whengoes to infinity. Depending on gravity or drift effecithinertia values,
the Lagrangian attractor can have different dimensiongingifrom the initial three-dimensional space to two-disienal layers and
one-dimensional attractors that can be shifted from arzbotal to a vertical position.

INTRODUCTION

Clustering could be defined as the propensity of an initiatliformly distributed cloud of particles to accumulate amee
regions of the physical space. This is an important phenoménunderstand in order to explore, identify and possibly
monitor some natural or hand-made mixing processes suttoas tausing rain formation sediments transportatiot, fue
mixing and combustion.

In the present study in order to observe their clusterintepatthe particles are initially uniformly distributedtime flow
and then their positions monitored as a function of time. dms cases a Lagrangian attractor is observed. That is the
initially homogeneously distributed cloud of particledlveind in a set of loci that does not evolve anymore with time.
(But of course the particles are moving within that set.} lthie structure of that Lagrangian attractor and its depsyde
on St andy numbers that is studied here.

The main focus of this study is to evaluate the dimension e$¢hattractors in a synthetic stationary field and to quantif
them. The is done by using a nearest-neighbour distancgsasal

NUMERICAL METHOD

The underlying Eulerian velocity field is generated as a stimmdom incompressible Fourier modes with a prescribed
energy spectrun& (k). With this method, the computational task reduces to theutation of the trajectory of each
particle placed in the turbulent field initially &,. Unlike the classical KS decomposition [2, 5], here the waetors
kiji = (ki, k;, ki) are implemented arithmetically to enforce a periodic ctadifor the flow field. NV, = 253 particles
are initially homogeneously distributed, whenever a phati leaves the turbulence box domain (&g.> L) it is then
re-injected on the opposite side.

Following [1] the equation of motion for the inertial patéds derived from [3, 4] and consists in a drag force and drift

acceleration (weight):

av. 1

o (u(xp(t), 1) = V(t) + Va) (1)
Three dimensionless parameters are introduced to makgagival and quantitative analyses of the particles cluster

The Stokes numbe$t = 7,/T = Taurms/L, the Drift parametety = V;/urms = Tag/urms and the Froude number

Fr = tpms/VgL

RESULTS AND DISCUSSION

The particles initially uniformly distributed in the flow febare allowed to evolve until an asymptotic clustering gatt-
also referred to as Lagrangian attractor - is achieved.

The shape of this cluster varies from clear one-dimensistnattures (Fig. 1bf, ah) to three-dimension distributedcs
tures (Fig. 1de) or two-dimensional layer-like structuifeig. 1dh).

We can look at Fig. 1 from the prospective of the Froude numiies variation in clustering patterns is identified by keep-
ing F'r constant while varying't. A constant Froude number corresponds to the case of vattygnparticle’s property
(7o) for a given environment (turbulence and gravity) whichresponds to most practical experimental situations.
Three different cases as shown in Table 1 are consideredswigti increments in the Stokes number in the range [0-1].
Cases of constant Froude number are easy to follow on Fige¥,dorrespond to the vertical rows e,f,g,h. For a given
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Figure 1. Evolution of the particles cloud fdr.548 < Fr < 1.34 and0.663 < St < 1.165, att = 300s

Table 1. Different cases for studying the attractor topology fofafiént range of'r.

Case Fr St Range Observed Patterns
1D-H 1D-v 2D-L 3D

E 1.01 0-1 v v v
F 0.717 0-1 v v v
G 0.548 0-1 v v

value of F'r, the intensity of clustering depends on the Stokes numbeiStAncreases, the particles’ one-dimensional
clustering is first enhanced and then destroyed to evepttgdppear in the form of a two-dimensional layer (2D-L)
clustering.

For high values off'r (low gravity), case E corresponding to Fig. 1f, particleled on horizontal one-dimensional
structures (1D-H) for low values &t but higherSt values result into vertical one-dimensional structurd3-{4). For
the mid range values df'r, case F corresponding to Fig. 1f, the clear one-dimensiomi@gtontal structure (1D-H) is
no more observed, instead some intermediate (1D-HV) omeasional structures can be seen for Igtwalues which
converge into a layered curtain-like (2D-L) structureSass increased. Finally, low values &fr (case G, Fig. 1h) allow
the particles to accumulate predominantly in the directibgravity, so vertical patterns are identified such as 1Dadl a
2D-L structures.
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