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A growing body of studies in wall-bounded turbulence has shown that the generation of
wall-shear stress fluctuations is directly connected with outer-layer large-scale motions.
In the present study, we investigate the scale-based structures of the streamwise
wall-shear stress fluctuations (τ ′

x ) in turbulent channel flows at different Reynolds
numbers. The wall-shear stress structures are identified using a two-dimensional
clustering methodology, and two indispensable factors, scale and sign, are considered
for the analysis. The structures are classified into positive and negative families
according to the sign of τ ′

x . The statistical properties of the structures, including
geometrical characteristics, spatial distribution, population density, fluctuating intensity,
and correlations with outer motions are comprehensively investigated. Particular attention
is paid to the asymmetries between positive and negative structures and their connection
with wall-attached energy-containing eddies. In virtue of our results, only the large-scale
structures of negative τ ′

x contain the footprints of the inactive part of wall-attached eddies
populating the logarithmic region.

Key words: boundary layer structure, turbulent boundary layers

1. Introduction

The ability to understand and predict the wall-shear stress in wall-bounded turbulence
is pursued in aerodynamic/hydrodynamic design of modern aircraft and ships, among
many engineering applications. The wall-shear stress can be decomposed into mean and
fluctuating components, i.e. τw = τw + τ ′

w. Although many studies have focused on the
properties of the mean wall-shear stress, such as its Reynolds number dependence (Nagib,
Chauhan & Monkewitz 2007; Chauhan, Monkewitz & Nagib 2009; Schlatter & Örlü
2010), its physical-informed decomposition and connection with the statistical quantities
across the wall layer (Fukagata, Iwamoto & Kasagi 2002; Renard & Deck 2016; Yoon
et al. 2016; Modesti et al. 2018; Fan, Cheng & Li 2019a; Fan, Li & Pirozzoli 2019b; Li
et al. 2019) and active/passive control approaches (Gose et al. 2018; Yao, Chen & Hussain
2018; Li & Liu 2019; Yao & Hussain 2019), to date, very few works have investigated the
features of wall-shear stress fluctuations and their associated dynamics. Despite this lack
of analysis, wall-shear stress fluctuations are of importance for noise radiation, structural
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vibration, drag generation and wall heat transfer, among others (Choudhari & Khorrami
2007; Diaz-Daniel, Laizet & Vassilicos 2017; Zhang et al. 2017; Bae et al. 2018).

First laboratory experiments were incapable of measuring the instantaneous wall-shear
stress with enough accuracy to produce meaningful signals. Researchers reported that the
intensity of the wall-shear stress fluctuations were not sensitive to the Reynolds number
within the measurement uncertainties (Eckelmann 1974; Chambers, Murphy & McEligot
1983; Madavan, Deutsch & Merkle 1985; Karlsson & Johansson 1986; Alfredsson et al.
1988). For instance, Alfredsson et al. (1988) suggested that the root mean squared value
of streamwise wall-shear stress fluctuations follows τ ′

x,rms = 0.4τx , where τx is the mean
component of the streamwise wall-shear stress. However, recent studies using both direct
numerical simulations (DNS) and experiments have shown that τ ′

x,rms is actually sensitive
to changes in the Reynolds number (Fischer, Jovanović & Durst 2001; Abe, Kawamura &
Choi 2004; Hu, Morfey & Sandham 2006; Große & Schröder 2009; Schlatter & Örlü 2010;
Örlü & Schlatter 2011; Yang & Lozano-Durán 2017). Schlatter & Örlü (2010) proposed an
empirical correlation to predict the dependence of τ ′

x,rms on the friction Reynolds number,
i.e. τ ′

x,rms/τx = 0.298 + 0.018 ln(Reτ ), where Reτ = uτ δ/ν, uτ is the friction velocity, ν is
the kinematic viscosity and δ is the boundary-layer thickness (or channel half-height). The
Reynolds number dependence of τ ′

x,rms suggests that large-scale energy-containing motions
populating the logarithmic and outer regions in high-Reynolds-number wall turbulence
have non-negligible influences on the near-wall dynamics and, hence, on the wall friction
(Abe et al. 2004; Örlü & Schlatter 2011; de Giovanetti, Hwang & Choi 2016; Renard &
Deck 2016; Baidya et al. 2019; Fan et al. 2019a,b).

The characteristics of organized turbulent motions in the logarithmic and outer regions
and their interactions with the near-wall dynamics have been the focus of multiple studies.
Large-scale motions (LSM) and very large-scale motions (VLSM) have been identified
in high-Reynolds-number pipes (Kim 1999; Wu, Baltzer & Adrian 2012), channels (Del
Álamo et al. 2004, 2006; Lozano-Durán & Jiménez 2014a) and zero-pressure-gradient
turbulent boundary layers (Wark & Nagib 1991; Sillero, Jiménez & Moser 2013). Further
studies also revealed that these energy-containing motions exert a pronounced influence
on the near-wall turbulent intensities (Abe et al. 2004; Hutchins & Marusic 2007; Mathis,
Hutchins & Marusic 2009; Marusic, Mathis & Hutchins 2010; Ganapathisubramani et al.
2012; Mathis et al. 2013; Hu & Zheng 2018; Agostini & Leschziner 2019b) in the form
of superposition and modulation of the near-wall flow velocities. The former refers to
the footprint of large-scale fluctuations on the near-wall turbulence, while the latter
is the intensity amplification or attenuation of near-wall small-scale structures by the
outer motions. Mathis et al. (2013) modelled the integrated effects of superposition and
modulation in the wall-shear stress as

τ ′+
w ( y+) = τ ′∗

w ( y+)
{
1 + βuu+

OL( y+
O )

} + αuu+
OL( y+

O ), (1.1)

where τ ′+
w is the wall-shear stress fluctuations scaled by viscous units, y+ is the

wall-normal height scaled by viscous units, τ ′∗
w is the near-wall universal signal without the

outer influences, u+
OL denotes the large-scale streamwise turbulent intensities at the centre

of the logarithmic region y+
O , and αu, βu are the superposition and modulation coefficients,

respectively. Mathis et al. (2013) emphasized that the superposition and modulation in
(1.1) are essential for the generation of wall-shear stress fluctuations. The modulation
model has also been successful in predicting near-wall velocity fluctuations by using fluid
properties in the outer region for the velocity fluctuations (Marusic et al. 2010). Note that
in (1.1), positive and negative values of u+

OL have equally weighted contributions to the
near-wall fluctuations. However, the presence of nonlinear interactions and energy transfer
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Structure of streamwise wall-shear stress fluctuations 903 A29-3

between inner and outer scales suggests that this expression might not capture fully the
generation of wall stress. Agostini & Leschziner (2016a,b, 2018, 2019a) stated that the
modulation of near-wall streamwise velocity fluctuations by outer LSM is exceedingly
asymmetric, i.e. the amplification caused by positive outer LSM is much stronger than the
attenuation caused by negative ones. Recently, Howland & Yang (2018) argued that the
amplification and attenuation of the near-wall turbulence by LSM might follow different
mechanisms. Moreover, Kawata & Alfredsson (2018) and Cho, Hwang & Choi (2018)
observed inverse energy transfer from small-scale motions to LSM in the vicinity of
the wall. Therefore, two indispensable factors should be considered to investigate the
mechanism of the near-wall turbulence, i.e. the scale and sign of the motions involved,
which is focus of the present study.

The attached-eddy hypothesis provides a conceptual model describing the multiscale
nature of fluid motions in wall-bounded turbulence, which was first proposed by Townsend
(1976). In the model, it is conjectured that the logarithmic layer is populated by a collection
of randomly distributed energy-containing motions (or eddies) with their roots attached to
the ‘wall’ (the near-wall region). Based on Townsend’s attached-eddy model, the turbulent
intensities can be predicted as

u′2
+ = B1 − A1 ln( y/δ), (1.2a)

w′2
+ = B2 − A2 ln( y/δ), (1.2b)

v
′2

+ = B3, (1.2c)

where u′, v′ and w′ are the streamwise, wall-normal and spanwise velocity fluctuations,
respectively, and Ai (i = 1, 2) and Bj (j = 1, 2, 3) are constants. This model has been
extended and developed by Perry & Chong (1982), Perry, Henbest & Chong (1986), Perry
& Marusic (1995), Marusic (2001), Meneveau & Marusic (2013), Woodcock & Marusic
(2015) and Mouri (2017), to name a few, where other works have complemented the
original picture proposed by Townsend (Mizuno & Jiménez 2011; Davidson, Nickels &
Krogstad 2006; Dong et al. 2017; Lozano-Durán & Bae 2019; Hu, Yang & Zheng 2020).
For more details, the reader is referred to a recent review work by Marusic & Monty
(2019). Many observations favour the existence of the wall-attached eddies, such as the
logarithmic increase of the near-wall streamwise velocity fluctuations with the Reynolds
number (Marusic & Kunkel 2003; Hoyas & Jiménez 2006), the emergence of k−1

x (kx is
the streamwise wavenumber) region in the spectra of streamwise velocity (Nickels et al.
2005), and the linear growth of spanwise integral length of the energy-containing motions
with the distance to the wall (Tomkins & Adrian 2002; Del Álamo et al. 2004; Hoyas &
Jiménez 2006; Lozano-Durán, Flores & Jiménez 2012; Lee & Moser 2015; Cheng et al.
2019).

Recently, Diaz-Daniel et al. (2017) proposed a generalized attached-eddy model to
describe the generation of wall-shear stress fluctuations and investigated the linkage
between the filtered wall-shear stress fluctuations and the second-order structure functions
of velocity fluctuations at a given wall-normal location. Yang & Lozano-Durán (2017)
reported that the generation of wall-shear stress fluctuations can be interpreted as
a momentum cascade across wall-attached eddies of different scales. Pan & Kwon
(2018) found that the conditionally averaged velocities in the proximity of the positive
and negative extremes of friction events in the turbulent boundary layer exhibit
disparate patterns, implying different mechanisms between the extremes with the
structures populating above the wall. Baidya et al. (2019) measured the instantaneous
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Case Reτ Lx (h) Ly(h) Lz(h) Δx+ Δz+ Δy+
min Δy+

max NF

Re550 547 8π 2 4π 13.4 6.8 0.04 6.7 142
Re950 934 8π 2 3π 11.5 5.7 0.03 7.6 21
Re2000 2009 8π 2 3π 12.3 6.2 0.32 8.9 10

TABLE 1. Parameters of the DNS. Here, Lx , Ly and Lz are the sizes of the computational domain
in the streamwise, wall-normal and spanwise direction, respectively. Here, Δx+ and Δz+ denote
the streamwise and spanwise grid resolutions, respectively, in inner units. Here, Δy+

min and
Δy+

max are the finest and coarsest resolution in the wall-normal direction, respectively. Here,
NF is the number of flow fields used to accumulate statistics.

wall-shear stress in high-Reynolds-number pipes and boundary layers and found that the
energy-containing motions are stochastically coherent with skin-friction events. In the
present work, we aim to analyse the structure of the wall-shear stress fluctuations and
to assess the relationship between the skin-friction events with the wall-attached eddies.
Special emphasis is placed on the length scale and sign of the flow motions contributing
to the wall-shear stress generation.

The paper is organized as follows. In §§ 2 and 3, the DNS database and the method
for structure identification are introduced. In § 4, the statistical properties of wall-shear
stress structures, including geometrical characteristics, spatial distribution, population
density, fluctuating intensity and correlations with outer streamwise velocity motions are
investigated. Finally, concluding remarks are summarized in § 5.

2. DNS database

The DNS database used in the present study has been extensively validated by Jiménez
and coworkers (Del Álamo & Jiménez 2003; Del Álamo et al. 2004; Hoyas & Jiménez
2006; Lozano-Durán et al. 2012; Lozano-Durán & Jiménez 2014b). Three cases at Reτ =
545, 934 and 2009 are selected and named as Re550, Re950 and Re2000, respectively.
The DNS database was originally built in Del Álamo & Jiménez (2003), Del Álamo et al.
(2004) and Hoyas & Jiménez (2006). Details of the parameter settings are listed in table 1.
Hereafter, x , y and z stand for the streamwise, wall-normal and spanwise directions,
respectively. The computational domains in table 1 are large enough to resolve the LSM
and VLSM (Guala, Hommema & Adrian 2006; Hutchins & Marusic 2007; Hwang 2015).

In this study, we focus on the streamwise wall-shear stress fluctuations, τ ′
x . The root

mean squared value of τ ′
x is normalized by its mean component (τx ) and expressed as

τ+
x,rms = τ ′

x,rms

τw
. (2.1)

The variations of τ+
x,rms as a function of Reτ are shown in figure 1. Previous estimations

of τ+
x,rms using DNS of channel flows (Hu et al. 2006) and DNS of zero-pressure-gradient

turbulent boundary layers (Schlatter & Örlü 2010) are also included in the plot for
comparison. The results show that τ+

x,rms increases with Reτ , implying that the LSM have
an influence on the skin-friction events (Örlü & Schlatter 2011; Mathis et al. 2013). In our
present results, the Reynolds number dependence of τ+

x,rms is well fitted by the empirical
formula, τ+

x,rms = 0.292 + 0.018 ln(Reτ ). The data of Hu et al. (2006) also collapse with
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s

200 500 800 1000 2500
Reτ

Present DNS database
Hu et al. (2006) DNS
Schlatter & Örlü (2010) DNS

FIGURE 1. Variations of τ+
x,rms as a function of Reτ . The solid line is the empirical

formula defined by τ+
x,rms = 0.292 + 0.018 ln(Reτ ) for channel flows. The dashed line is

the empirical formula defined by τ+
x,rms = 0.298 + 0.018 ln(Reτ ) for zero-pressure-gradient

turbulent boundary layers (Schlatter & Örlü 2010).

20 100 1000 –2 0 2 4

Re550
Re950
Re2000

Re550
Re950
Re2000

λz
+ τ ′

x/τ ′
x,rms

100

101

102
y+

103
0.4

0.2

p.
d.

f.

0

(b)(a)

FIGURE 2. (a) The spanwise premultiplied spectra of the streamwise velocity fluctuations.
Contour lines are 0.2, 0.4, 0.6 and 0.8 of the maximum. (b) The probability density functions
(p.d.f.s) of normalized streamwise wall-shear fluctuations (τ ′

x/τ
′
x,rms).

our empirical formula, which is similar to the estimation given by Schlatter & Örlü (2010)
for turbulent boundary layers.

Figure 2(a) shows the spanwise premultiplied spectra of the streamwise velocity
fluctuations. It can be seen that the spectra span from λ+

z ≈ O(10) to λz ≈ O(h), where
λz denotes the spanwise wavelength. The small scales of the spectra in the near-wall
region (y+ ≤ 100) scale well in viscous units. As the Reynolds number increases, the
footprint of the LSM penetrates deep into the near-wall region and become apparent at
large wavelengths, suggesting that LSM may affect the generation of the skin-friction
events. Figure 2(b) shows the p.d.f.s of normalized streamwise wall-shear fluctuation
(τ ′

x/τ
′
x,rms). The p.d.f.s are asymmetric in shape and positively skewed. This outcome

highlights that the high- and low-speed skin-friction events are organized in fundamentally
different manners, which will be investigated in the following sections.
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3. Structure identification method

We follow a clustering methodology to identify the structure of regions of intense
τ ′

x . The method has been used to identify three-dimensional turbulent structures in
previous studies (Moisy & Jiménez 2004; Del Álamo et al. 2006; Lozano-Durán et al.
2012; Lozano-Durán & Jiménez 2014a; Dong et al. 2017; Hwang & Sung 2018, 2019;
Osawa & Jiménez 2018; Cardesa et al. 2019). We adapt the methodology to compute
two-dimensional structures in order to analyse the fields of τ ′

x . A brief description of the
approach is given as follows.

(i) The grid points at the wall satisfying

τ ′
x < −ατ ′

x,rms (3.1)

or
τ ′

x > ατ ′
x,rms (3.2)

are marked, where α is a positive threshold value. Criteria (3.1) and (3.2) extract negative
and positive intense skin-friction events, respectively.

(ii) The grid points marked in step (i) which are contiguous in space are connected into
individual structures using the four orthogonal neighbours connectivity rule (Rosenfeld &
Pfaltz 1966).

(iii) The spatially connected regions in step (ii) are defined as τ ′
x structures. The

bounding rectangle aligned with the Cartesian grid of each individual structure has length
lx and width lz, which are chosen as the characteristic length scales of the structures.

Hereafter, we denote the structures satisfying (3.1) and (3.2) as NFs and PFs,
respectively. Only structures with an area larger than 30 × 30 viscous units are taken into
consideration to avoid artefact due to the limited grid resolution of the DNS database
(Del Álamo et al. 2006; Lozano-Durán et al. 2012). As in previous work, we follow
the percolation theory to determine the value of α (Moisy & Jiménez 2004; Del Álamo
et al. 2006; Lozano-Durán et al. 2012; Lozano-Durán & Jiménez 2014a; Dong et al. 2017;
Hwang & Sung 2018, 2019; Osawa & Jiménez 2018; Cheng et al. 2020). Figure 3 shows
the percolation diagram for NFs and PFs, when α varies from 0.05 to 2.5. Dash-dotted
lines represent the area fractions (A/Am) of the structures, where A = ∑

(lx lz) is the sum
of all the individual areas of the structures for a given α, and Am is the maximum A
over 0.05 ≤ α ≤ 2.5. Solid lines represent the number fraction (N/Nm), where N is the
total number of the structures identified for a given α and Nm is the maximum N over
0.05 ≤ α ≤ 2.5.

We take figure 3(a) as an example. When α < 0.2, A/Am ≈ 1, most grid points extracted
in step (i) are connected into a single structure. Percolation transition occurs in the range
of 0.2 � α � 1.3, where A/Am decreases gradually with increasing α. When α > 1.3, the
identification process yields fragmentary structures corresponding to very strong friction
regions. The variations of N/Nm are different. When α < 1.3, N/Nm increases with α
as new structures appear. The number of identified structures attains the maximum at
α ≈ 1.3. Similar features can be found in the percolation diagram of PFs, as shown in
figure 3(b). According to the percolation transition shown in figure 3, we choose α = 0.5
(vertical lines in figure 3). Nonetheless, the results discussed in the remainder of the paper
are qualitatively similar for values of α in the range of 0.4 ≤ α ≤ 0.7 (see the Appendix).

With α = 0.5, the total number, area and area fraction of the structures (NFs and PFs)
are summarized in table 2. The area fraction is defined by Af = A/(NFAw), where Aw =
2Lx × Lz represents the total area of the upper and lower walls and NF is the number of
flow fields considered in the analysis. The results from table 2 reveal that the number of
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1

(b)(a)
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FIGURE 3. Percolation diagrams for the structure identification, (a) NFs and (b) PFs. Solid-
and dash-dotted lines represent the number fraction (N/Nm) and the area fraction (A/Am) of the
identified structures, respectively. The vertical dashed lines are α = 0.5.

Case NPF NNF APF ANF Af ,PF Af ,NF

Re550 599 001 291 621 47 386 118 585 0.528 1.322
Re950 190 481 98 598 5453 13 427 0.548 1.350
Re2000 602 435 479 958 2676 6435 0.565 1.358

TABLE 2. The total number and area of the identified structures. Here, NPF and NNF are the
total number of PFs and NFs, respectively. Here, APF and ANF are the total area of PFs and NFs,
respectively. Here, Af ,PF and Af ,NF are the area fraction of PFs and NFs, respectively.

PFs is larger than NFs, but the area of PFs is smaller than NFs, regardless of the Reynolds
number. This result establishes the first difference between PFs and NFs, which will be
studied in detail in the following section.

4. Results and discussion

In this section, we dissect the statistical properties of the τ ′
x structures, namely, the

geometrical characteristics, spatial distribution, population density, fluctuating intensity
and correlations with outer motions. Particular attention is paid to the asymmetries
between PFs and NFs and their relationship with the wall-attached eddies.

4.1. Geometrical properties of the structures
The geometrical properties of the structures are characterized by the two length scales,
l+x and l+z , which are normalized by viscous units. Figures 4(a) and 4(b) show the joint
p.d.f.s of l+x and l+z for PFs and NFs, respectively. The joint p.d.f.s cover a wide range of
l+x and l+z , which implies that the skin-friction events are multiscale and the result of the
collective effect of motions with different length scales (de Giovanetti et al. 2016; Yang
& Lozano-Durán 2017; Cho et al. 2018; Agostini & Leschziner 2019a; Baidya et al. 2019;
Cheng et al. 2019). The mode of the joint p.d.f.s for PFs and NFs follows approximately

l+x = 0.64(l+z )1.44 (4.1)
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102
102

103

104

102

103

104

103

lz
+

lx
+

lz
+

λx
+

λz
+

(b)(a)

(c)

102

103

102101 103

102 103

FIGURE 4. (a,b) Joint p.d.f.s of l+z and l+x for PFs (a) and NFs (b). The dashed straight
lines in panel (a) and panel (b) denote l+x = 0.64(l+z )1.44. All contour levels of the p.d.f.s
are logarithmically distributed. (c) Two-dimensional premultiplied spectra of u′ in the viscous
region. The dashed straight lines in panel (c) denote λ+x ∝ (λ+z )2. Contour lines are 0.25, 0.5 and
0.75 of the maximum. For all figures, black lines denote Re550, red lines denote Re950 and blue
lines denote Re2000.

for l+z ≥ 100. For reference, figure 4(c) shows the two-dimensional spectra of u′ in the
viscous region. The streamwise wavelength (λ+

x ) and the spanwise wavelength (λ+
z ) follows

λ+
x ∝ (λ+

z )2, which coincides with the power law between λ+
x and λ+

z of the u′ spectra in
the logarithmic region reported by Del Álamo et al. (2004). One possible explanation for
the nonlinear relationship between λ+

x and λ+
z (or l+x and l+z ) is the meandering nature of the

near-wall u′ structures. At low Reynolds numbers, Jiménez, Del Álamo & Flores (2004)
observed a power law relationship between λ+

x and λ+
z for near-wall streaky structures

when taking their meandering nature into account. Some recent studies have reported a
linear relationship between λ+

x and λ+
z at very large Reynolds number. Chandran et al.

(2017) investigated the two-dimensional spectra of u′ in a turbulent boundary layer at
Reτ = 26 000, and found a linear relationship of λ+

x ∝ λ+
z . Therefore, l+x and l+z of the

τ ′
x structures might also follow a linear relationship at sufficiently high Reynolds numbers.
Under the attached-eddy model framework (Townsend 1976; Perry & Chong 1982) and

assuming that wall-attached eddies are space filling, Srinath et al. (2018) and Solak &
Laval (2018) pointed out that the p.d.f. of l+x should obey p ∝ (l+x )−2. The marginal p.d.f.s
of l+x for τ ′

x structures is shown in figure 5. It can be seen that asymmetrical features are
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102
1×10–9

1×10–7

1×10–5

1×10–3

1×10–6

1×10–7

1×10–5

1×10–4

1×10–3

103 102 103 104

p.
d.

f.

Re550
Re950
Re2000

Re550
Re950
Re2000

lx
+ lx

+

(b)

p ∝ (lx+)–2.0

p ∝ (lx+)–2.0

(a)

FIGURE 5. Marginal p.d.f.s of l+x for PFs (a) and NFs (b). The red dashed lines in figures
represent p ∝ (l+x )−2.0.

0.20

0.15

0.10p.
d.

f.

0.05

0 5 10 15 20

Re550 PFs

Re550 NFs

Re950 PFs

Re950 NFs

Re2000 PFs

Re2000 NFs

lx
+/lz

+

FIGURE 6. Marginal p.d.f.s of l+x /l+z for the structures.

exhibited between PFs and NFs. For NFs, the p.d.f.s of l+x approximately follow p ∝ (l+x )−2,
which is consistent with the prediction of Srinath et al. (2018) and Solak & Laval (2018);
whereas for PFs, the relation is less accurate. This result suggests that NFs may be the
direct outcome of the space-filling wall-attached eddies, which will be analysed in detail
in §4.5.

The marginal p.d.f.s of aspect ratio l+x /l+z are shown in figure 6. The p.d.f.s of PFs and
NFs differ in shape, but they are insensitive to the Reynolds number. The p.d.f. profiles
of NFs are flatter than those of PFs, suggesting that l+x /l+z of NFs is more uniformly
distributed. The p.d.f.s reach their maxima at l+x /l+z ≈ 5, regardless of the Reynolds
number and the sign of the τ ′

x structure.

4.2. Spatial distribution of the structures
We investigate next the spatial distribution of τ ′

x structures. Let us consider two structures,
labelled as i and j. Figure 7 provides a schematic of the two structures. Their relative
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Structure j

xc
( j) – xc

(i)

(xc
(i), zc

(i))

(xc
( j), zc

( j))

zc
( j) – zc

(i)

Structure i

ri, j

FIGURE 7. The schematic of the distance between two τ ′
x structures.

separation in the streamwise and spanwise direction are defined as

δx = x (j)
c − x (i)

c

d(i,j)
and δz = z(j)

c − z(i)
c

d(i,j)
, (4.2a,b)

respectively, where (xc, zc) is the centre of the bounding rectangle belonging to the
structure i or j, and d(i,j) is the mean diagonal of the two rectangles. The absolute distance
of the two structures is defined as

ri,j =
√

(x (j)
c − x (i)

c )2 + (z(j)
c − z(i)

c )2. (4.3)

Following the works of Lozano-Durán et al. (2012), Dong et al. (2017) and Osawa
& Jiménez (2018), we only consider structures with 1/2 ≤ l(j)z /l(i)z ≤ 2, i.e. the structures
sharing similar spanwise size.

Figure 8 shows the joint p.d.f.s of δx and δz for Re950. Similar results are obtained for
the other two cases, which are not shown here for brevity. Figure 8 shows that structures
tend to be organized side by side along the spanwise direction, while the low probabilities
around δz ≈ 0 indicates that the structures do not overlap along the spanwise direction.

Figure 9 displays the variations of r+
i,j as a function of l+z . For l+z > 100, NFs follow

the approximately the power law relationship r+
i,j ≈ 5.3(l+z )0.8, regardless of the Reynolds

number, whereas a similar trend is absent for PFs.

4.3. Scale-dependent properties of the structures
In this section we investigate the properties of the τ ′

x structures conditioned on l+z ,
including the population density, intensity of τ ′

x and marginal p.d.f.s of τ ′
x at several

selected l+z .
The scale-dependent population density is defined as

nd(l+z ) = Ni(l+z )

NFA+
w

, (4.4)

where Ni(l+z ) is the number of the structures with a given l+z , NF is the number of flow fields
used to accumulate statistics and A+

w = 2L+
x L+

z . Figure 10 shows the distribution of nd as
a function of l+z for all cases. It can be seen that, for NFs, nd decays logarithmically with
nd ∝ (l+z )−2.5 when l+z > 100; whereas a constant power-law decaying rate is less defined
for PFs. The latter suggests that PFs and NFs are distributed in different manners.
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(b)(a)

(c)

–1.0 –0.5 0.5 1.00
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–1.0

1.0

–0.5

–0.5
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0.5 1.00

0

–1.0

1.0
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0.5

0
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–0.5

0.5

0

–1.0 –0.5 0.5 1.00

δx

δz

δz

FIGURE 8. Joint p.d.f.s of the relative spacings in Re950. (a) The closest PFs relative to a PFs,
(b) the closest NFs relative to a NFs and (c) the closest PFs relative to a NFs.

101
102 102

103

103

102 102 103

Re550
Re950
Re2000

Re550
Re950
Re2000

lz
+ lz

+

(b)(a)

ri, j
+

FIGURE 9. Variations of the absolute distance (r+
i,j) as a function of l+z . (a) PFs and (b) NFs.

The red dashed lines in panel (b) denotes r+
i,j ≈ 5.3(l+z )0.8.
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FIGURE 10. Variations of the population density (nd) as a function of l+z . (a) PFs and (b) NFs.
The red dashed line in panel (b) denotes nd ∝ (l+z )−2.5.
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Re2000 NFs
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+

Iτx
 = 1.03+

FIGURE 11. Variations of I+
τ ′

x
carried by PFs and NFs as a function of l+z .

The scale-dependent intensity of τ ′
x is expressed as

I+
τ ′

x
(l+z ) =

√√√√ 1
Nτ

Nτ∑
i=1

[
τ ′

i,x(l+z )

τ ′
x,rms

]2

, (4.5)

to the structures with a given l+z , and τ ′
i,x(l

+
z ) denotes the instantaneous streamwise

wall-shear stress at the ith grid point. In this manner, I+
τ ′

x
(l+z ) represents the intensity of

the streamwise wall-shear fluctuations carried by the structures with spanwise size l+z .
Figure 11 shows the variations of I+

τ ′
x

as a function of l+z . For both PFs and NFs, I+
τ ′

x
collapses

well, showing the independence of I+
τ ′

x
on the friction Reynolds number. For all cases, the

expected values of I+
τ ′

x
are higher for PFs than for NFs, but the former rarely attain size

larger than l+z ≈ 300.
This asymmetrical feature suggest that large-scale outer motions affect mainly

the negative skin-friction events. The phenomenon is reminiscent of the asymmetric
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–0.5

lz
+ = 50

lz
+ = 150

lz
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lz
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τ ′
x/τ ′
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FIGURE 12. The marginal p.d.f.s of τ ′
x/τ

′
x,rms for NFs at several selected l+z by using the case

of Re950. The red curve denotes a fitting curve by Gaussian function. The vertical dashed line
denotes τ ′

x = −0.5τ ′
x,rms.

modulation of near-wall streamwise velocity fluctuations by positive and negative outer
large-scale motions (Agostini & Leschziner 2016a,b, 2018, 2019a). It also implies that the
symmetric modelling of positive and negative wall-attached structures by Baidya et al.
(2019) for the u′ spectrum might be improved by accounting for the flow asymmetries.

Another interesting feature revealed by figure 11 is that as l+z increases, the intensity I+
τ ′

x

of NFs converges to a constant value, i.e. I+
τ ′

x
≈ 1.03, which suggests that the intensities

of large-scale NFs are independent of l+z . The marginal p.d.f.s of τ ′
x(l

+
z )/τ ′

x,rms for NFs at
several selected l+z is shown in figure 12 for case Re950. Similar trends are observed in the
other two cases (not shown). As l+z increases, the p.d.f.s gradually converge to a normal
distribution, which is well described by the Gaussian function,

p(ζ )
∣∣
l+z

= a−(ζ−b)2/2c2
, (4.6)

where the fitting constants are a = 1.223, b = −0.784 and c = 0.44, and ζ stands for the
abscissa in figure 12. The fitting curve is linked to the constant value of I+

τ ′
x

in figure 11.
The definition of I+

τ ′
x

in (4.5) can be rewritten as

I+
τ ′

x
(l+z ) =

√∫ −α

−∞
ζ 2p(ζ )

∣∣
l+z

dζ . (4.7)

Substitution of (4.6) into (4.7) yields

I+
τ ′

x
(l+z ) ≈ 1.027, (4.8)

which is consistent with the constant value (I+
τ ′

x
≈ 1.03) shown in figure 11.

The constant value of I+
τ ′

x
for large-scale NFs can be speculated and explained by the

properties of the large-scale structures in the near-wall region. Hwang (2016) reported that
large-scale u′ motions should scale with the inner units in the vicinity of the wall due to
viscous effects, which is supported by the measurements of the high-Reynolds-number

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 R

ob
er

t C
ro

w
n 

La
w

 L
ib

ra
ry

, o
n 

05
 O

ct
 2

02
0 

at
 1

7:
28

:0
1,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

0.
63

9

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.639


903 A29-14 C. Cheng, W. Li, A. Lozano-Durán and H. Liu
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+ 

FIGURE 13. (a) Variations of I+
u′ at several selected y+ in Re950. (b) The convergent values of

I+
u′ ((I+

u′ )constant) with respective to y+ and the black solid line denotes (I+
u′ )constant = 0.38y+.

turbulent boundary layers (Samie et al. 2018). Cho et al. (2018) further pointed out that
this inner scaling is related to the balance between the turbulent transport and dissipation
at large scale in the near-wall region. The readers are referred to Hwang (2016) and Cho
et al. (2018) for more details.

To further investigate the observation of I+
τ ′

x
≈ constant, we compute two-dimensional

structures of u′ at a given y-location using the clustering methodology. The negative
near-wall u′ structures in the wall-parallel plane are identified following the same approach
described in § 3. We have checked that the threshold within 0.4 ≤ α ≤ 0.7 has no impact
on the conclusions below. Similarly to the definition of I+

τ ′
x

in (4.5), we introduce a
scale-dependent streamwise turbulence intensity as

I+
u′ (l+z , y+) =

√√√√ 1
Nu

Nu∑
i=1

[
u′

i(l+z , y+)

uτ

]2

, (4.9)

where Nu is the total number of the grid points belonging to the negative u′ structures with
a conditional l+z at y+, and u′

i(l
+
z , y+) denotes the negative streamwise velocity fluctuations

carried by the ith connected grid point. Analogous to I+
τ ′

x
, I+

u′ (l+z , y+) characterizes the
intensity of the streamwise velocity fluctuations of the negative u′ structures for a given l+z
at y+.

Figure 13(a) displays the variations of I+
u′ as a function of l+z at several near-wall

locations for Re950. Similar trends are observed for the other two cases (not shown here).
It can be seen in figure 13(a) that as l+z increases, I+

u′ tends to be constant with y+ ≤ 7.
The constant value of I+

u′ (denoted by (I+
u′ )constant) increases with y+. Figure 13(b) displays

the variation of (I+
u′ )constant as a function of y+ for all cases. A linear relationship between

(I+
u′ )constant and y+ holds for the three Reynolds numbers considered,

(I+
u′ )constant ≈ Cy+, (4.10)

where C is a constant. The results support the dimensional analysis in Cho et al. (2018);
LSM of u′ in the vicinity of the wall tend to follow inner scaling. According to (4.10), we
can assume that the streamwise velocity within the large-scale structures of negative u′
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Structure of streamwise wall-shear stress fluctuations 903 A29-15

follow the relationship
u′∣∣

l+z

uτ

≈ −Cy+. (4.11)

Additionally, the streamwise wall-shear fluctuations are given by

τ ′
x = μ

∂u′

∂y
, (4.12)

and substituting (4.11) into (4.12) yield

|τ ′
x |NFs

ρu2
τ

≈ C, (4.13)

which indicates that the magnitude of streamwise wall-shear fluctuations carried by
large-scale NFs is independent of l+z and tends to be a constant value, consistent with
figure 11.

4.4. Correlation between τ ′
x structures and outer motions

It is known that the energy-containing motions populating the logarithmic and outer
regions leave a ‘footprint’ on the wall surface (Hutchins et al. 2011; Mathis et al. 2013;
Agostini & Leschziner 2019a). Investigating the fluid patterns in the proximity of the
wall-shear events can shed light on the generation mechanism of the τ ′

x structures. To
this end, we calculate the correlation between the τ ′

x structures and the energy-containing
motions populating the logarithmic and outer regions by

R(rx , y, rz)|lz=
E

[
τ ′

x(x0, 0, z0)|lz u′(x0 + rx , y, z0 + rz)
]

στ ′
x
σu′

, (4.14)

where E is the expected value, (x0, 0, z0) is the reference point, (rx , y, rz) represents spatial
differences in the streamwise, wall-normal and spanwise direction, respectively, and στ ′

x

and σu′ are the standard deviation of τ ′
x and u′, respectively.

Figure 14 shows the isosurfaces of R = 0.2 for PFs and NFs with l+z = 100 and 300
for case of Re950. It is apparent that well-organized streaky structures emerge in the
proximity of τx ′ structures. The streaks associated with PFs are wider and longer than those
associated with NFs. This feature is robust for varying R, l+z and the Reynolds number. If
we set both r+

x and r+
z in (4.14) to zero, then R(0, y+, 0) (denoted as Ra( y+) hereafter)

represents the conditional correlation just above the target structures. The variations of
Ra( y+) as a function of y+ and y/h are shown in figure 15. The large-scale τ ′

x structures
(both PFs and NFs) are significantly correlated with u′ above the wall. For PFs, Ra remains
positive across the whole channel height when l+z > 50; whereas for NFs, Ra remains
positive until the wall-normal distance y+

c , which increases with l+z .
The asymmetry between the correlations of PFs and NFs can be interpreted from the

perspective of the quadrant decomposition (Wallace 2016). The joint p.d.f.s of u′+ and
v′+ just above PFs and NFs with l+z = 310 are displayed in figure 16. It can be seen that
at all wall-normal positions, PFs are mainly associated with the sweep events (u′+ > 0,
v′+ < 0), whereas NFs are strongly correlated with the ejection events (u′+ < 0, v′+ > 0)
in the near-wall region (y+ ≤ 150). This observation is in line with the profiles of Ra( y+)
shown in figure 15. In this sense, it is reasonable to hypothesize that PFs are generated by
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FIGURE 14. (a,b) Isosurfaces of R = 0.2 for PFs (a) and NFs (b) with l+z = 100 in Re950. (c,d)
Isosurfaces of R = 0.2 for PFs (c) and NFs (d) with l+z = 300 in Re950. The colour contours at
r+

x = 0 exhibit the plane-cut correlations.
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FIGURE 15. Variations of Ra( y+) as a function of y+ and y/h for PFs (a) and NFs (b) in
Re950.

strong sweeps, while NFs mainly arise from the ejections, consistent with the asymmetry
between sweeps and ejections.

Next, we pay attention to the signature of Townsend’s attached eddies. The logarithmic
decay of the second-order moment of u′ is considered to be one of the most compelling
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FIGURE 16. Joint p.d.f.s of u′+ and v′+ at several y+, conditioned on PFs (a,c,e,g) and
NFs (b,d,f ,h) with l+z = 310 in Re950. (a, b) y+ = 20, (c, d) y+ = 80, (e, f ) y+ =
150 and (g, h) y+ = 250.

indicators in favour of the attached-eddy model (Marusic et al. 2013; Meneveau & Marusic
2013). Inspired by this observation, the streamwise turbulence intensity conditioned on the
τ ′

x structures is calculated by

u′2
c

+
( y+, l+z ) = 1

Nτ

Nτ∑
i=1

[
u′

i(x0, y+, z0)|l+z
uτ

]2

, (4.15)

where u′
i(x0, y+, z0)|l+z is the streamwise velocity fluctuation just above the τ ′

x structures,
with a spanwise length of l+z .

Figure 17 shows the variations of u′2
c

+
as a function of y+ and y/h for the structures with

several selected l+z . The streamwise turbulence intensities of the full channel (u′2
+

) are also

plotted for comparison. Note that the profiles of u′2
c

+
are truncated at y+

c . A remarkable
finding is that u′2

c

+
decays logarithmically for NFs similarly to u′2

+
, but the same trend is

not so observed for PFs.
To quantify the logarithmic decaying of u′2

c

+
, we define the indicator function, Ξ =

y(∂u′2
c

+
/∂y). Figure 18 shows the values of Ξ as a function of y+ for NFs. The value of Ξ

calculated for u′2
+

is also included. Compared with the Ξ for the full channel data, slightly
better defined plateaus are observed for NFs in the range of 100 ≤ y+ ≤ 0.2h+, which
spans the conventional logarithmic region (Jiménez 2018; Baars & Marusic 2020b). The
wrinkles in figure 18 may be caused by a lack of DNS samples. The observation is striking,
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FIGURE 17. Wall-normal variations of u
′2+
c for PFs (a) and NFs (b) in Re950 for selected l+z .

The profile of u′2+ is included for comparison.

since the logarithmic decay of streamwise turbulence intensity has been only observed
at much higher Reynolds numbers (Marusic & Kunkel 2003; Jiménez & Hoyas 2008;
Marusic et al. 2013; Lee & Moser 2015; Yamamoto & Tsuji 2018). For example, Hultmark
et al. (2012) reported a logarithmic decay in turbulent pipe flows at Reτ ≥ 20 000, and
Yamamoto & Tsuji (2018) showed the logarithmic decay in the DNS of turbulent channel
flows at Reτ = 8000. Our observations at lower Reynolds numbers underlines the fact that
the large-scale NFs identified in the present study have active connection with the attached
eddies populating the logarithmic region. The results are also consistent with Cheng et al.
(2020), who showed that Townsend’s wall-attached eddies are present in wall turbulence
at Reynolds numbers that are traditionally considered low.

To further assess the flow properties above the τ ′
x structures, the marginal p.d.f.s of

u′ at y+ = 150 above PFs and NFs with l+z = 310 are compared with the p.d.f.s for
the full channel data in figure 19(a). The individual root mean square of u′ is used for
normalization. It should be noted this wall-normal position is below y+

c and located in the
logarithmic region. The p.d.f. of u′ above NFs is highly symmetric and follows a Gaussian
distribution as that for u′ for the full channel; whereas the p.d.f. of u′ above PFs is highly
skewed. Similar results are found in the other two Reynolds numbers, which are not shown
here for brevity. Bearing in mind that u′ should exhibit a Gaussian distribution in the
logarithmic region according to the attached-eddy model (Meneveau & Marusic 2013;
Marusic & Monty 2019), our results suggest again that NFs are linked to wall-attached
eddies, whereas PFs are not.

Another consequence of the attached-eddy model is the increase of the inner peaks
of the second-order moment of u′ as ln(Reτ ), which has been validated in previous
numerical and experimental studies (Marusic & Kunkel 2003; Hoyas & Jiménez 2006;
Meneveau & Marusic 2013; Lee & Moser 2015). By assuming that the inner peaks of the
streamwise turbulence intensities are the outcome of the wall-attached eddies residing in
the logarithmic region, Meneveau & Marusic (2013) found that the magnitude of the peaks
can be predicted as

u′2
m

+ ∼ A1 ln Reτ , (4.16)
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FIGURE 18. Wall-normal variations of the indicator function Ξ for NFs in (a) Re550,
(b) Re950 and (c) Re2000.
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FIGURE 19. (a) The marginal p.d.f.s of u′/u′
rms at y+ = 150 conditioned on PFs and NFs with

l+z = 310 for Re950, comparing with the p.d.f. of the full channel data. (b) Variations of the inner

peaks u′2
c,m

+
as a function of l+z for NFs. The solid and dashed lines denote u′2

c,m
+ ∝ 1.27 ln(Rel)

and u′2
c,m

+ ∝ 5.48 ln(Rel), respectively.
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where A1 is the constant in the eddy intensity function in (1.2a). Here, we define a
scale-based Reynolds number as

Rel = lzuτ,c(lz)

ν
, (4.17)

where uτ,c(lz) is the mean friction velocity carried by the structure with a given lz, defined
by

uτ,c(lz) = 1
Nτ

Nτ∑
i=1

uτ,i|lz, (4.18)

where uτ,i|lz denotes the instantaneous friction velocity at the ith grid point belonging to
the structures with a given lz. In this regard, Rel can be interpreted as a local Reynolds
number.

Figure 19(b) aids the examination of the growth rate of the inner peaks u′2
c,m

+
for PFs

and NFs. The value of u′2
c,m

+
for NFs grows logarithmically with ln(Rel) with a slope of

1.27, in the regions of 100 ≤ Rel ≤ 200 for Re550, 100 ≤ Rel ≤ 400 for Re950 and 100 ≤
Rel ≤ 700 for Re2000. The growth rate of 1.27 is in agreement with the value of A1 in
the eddy intensity function (1.2a), as reported in a collection of studies A1 
 1.25–1.26
(Hultmark et al. 2012; Marusic et al. 2013; Sillero et al. 2013; Lozano-Durán & Jiménez
2014a; Marusic, Baars & Hutchins 2017). For PFs, the peaks increase with ln(Rel) with a
growth rate of 5.48 for all cases, which is significantly larger than that of NFs and far from
the usual value for A1 discussed above.

Recently, Hwang (2015) reported that a single attached eddy is composed of two distinct
elements. One is a streak carrying streamwise velocity fluctuations and some spanwise
velocity fluctuations, another is the short and tall vortical structure containing all the
velocity fluctuating components. The scenario is consistent with a series of previous
studies (Adrian, Meinhart & Tomkins 2000; Del Álamo et al. 2006; Lozano-Durán et al.
2012). Seen in this context, it is not difficult to find that the footprint of the streak is
the near-wall inactive part of the attached eddy as it does not carry the Reynolds stress.
In addition, the long streaks are typically represented as the low-momentum regions
(Kim 1999; Adrian et al. 2000; Hwang 2015; Lee, Sung & Adrian 2019). Taking these
observations, it would be reasonable to view the NFs as the footprints of the attached
eddies populating the logarithmic region, which has been demonstrated from several
perspectives in the present study. Finally, we conjecture that the formation of PFs is caused
by the sweep of vortical structures, probably including the second element of a single
attached eddy and the ‘hairpin vortex packet’, a conceptual structure proposed to depict
the LSM (Hutchins, Hambleton & Marusic 2005; Adrian 2007; Lee et al. 2019). There
are three reasons: (i) the correlation of PFs in figure 14 reaches a higher wall-normal
location than that of NFs with a given l+z , which is consistent with the spatial image of a
single attached-eddy in the study of Hwang (2015) and the spatial location of LSM; (ii) the
correlations of large-scale PFs in figures 14(c) and 15(a) could be characterized by outer
scales, which behave similarly to the scales of LSM (Tomkins & Adrian 2002; Adrian
2007; Baars & Marusic 2020a); and (iii) figure 16 suggests that PFs are mainly associated
with the sweep events far from the wall.

5. Concluding remarks

In the present study, we have utilized a two-dimensional clustering methodology to
identify the structures of streamwise wall-shear stress fluctuations (τ ′

x ). The structures

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 R

ob
er

t C
ro

w
n 

La
w

 L
ib

ra
ry

, o
n 

05
 O

ct
 2

02
0 

at
 1

7:
28

:0
1,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

0.
63

9

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.639


Structure of streamwise wall-shear stress fluctuations 903 A29-21
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FIGURE 20. Joint p.d.f.s of l+z and l+x for PFs (a) and NFs (b). Red lines, α = 0.4; black lines,
α = 0.5; blue lines, α = 0.6; and brown lines, α = 0.7. The dashed straight lines in panel (a)
and panel (b) denote l+x = 0.64(l+z )1.44. All contour levels of the p.d.f.s are logarithmically
distributed.

are classified into positive and negative families, denoted by PFs and NFs, respectively,
according to their sign. The key findings are summarized below.

(a) The PFs and NFs exhibit several asymmetries: (i) PFs tend to be more fragmented
while NFs are organized in larger scales with approximately constant intensities with
respect to their spanwise length scales (l+z ); (ii) the population densities of PFs and
NFs decay logarithmically as a function of l+z , and the former decay faster; (iii) PFs
are predominantly correlated with the sweep events in the up-wall region, whereas
NFs are strongly impacted by the ejection events; and (iv) the correlations between
PFs and their surrounding streamwise velocities are wider and longer than those
associated with NFs.

(b) The attached eddies populating the logarithmic region are found to be actively
connected with large-scale NFs. The evidence is (i) the p.d.f.s of their lengths (l+x )
follow the prediction of the attached-eddy model, i.e. p ∝ (l+x )−2; (ii) the streamwise
turbulence intensities conditioned on the large-scale NFs obey a logarithmic
wall-normal decay; (iii) the inner peaks increase logarithmically with the local
Reynolds numbers at a model-predicted growth rate; and (iv) the streamwise
velocity fluctuations conditioned on the large-scale NFs tend to follow the Gaussian
distribution in the logarithmic region.

Finally, the existing theories in the framework of attached-eddy model do not account
for the asymmetrical features between PFs and NFs (Woodcock & Marusic 2015; Yang
& Lozano-Durán 2017). In this regard, the results in the present study may aid the future
development of more accurate modelling approaches.
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Appendix. Sensitivity to the threshold α

The influences of the threshold α in (3.1) and (3.2) are examined. Figures 20(a) and
20(b) show the effect of threshold on the joint p.d.f.s of l+x and l+z for Re950. The p.d.f.s
are well-organized along l+x = 0.64(l+z )1.44, suggesting that the relation between l+x and l+z
of the τ ′

x structures does not alter when varying α from 0.4 to 0.7. Figure 21 illustrates the
threshold effect on the wall-shear fluctuations carried by PFs and NFs for Re950. For a
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fixed α, the fluctuating intensity of PFs is pronouncedly larger than that of NFs at a given
l+z , and the fluctuating intensity of NFs converges to constant values at large l+z .

Next, we investigate the influence of α on the conditional velocities. The indicator
function Ξ for NFs with l+z = 310 over 0.4 ≤ α ≤ 0.7 for Re950 is displayed in
figure 22(a). These profiles are truncated at y+

c . As seen, the logarithmic decaying in
the range of 100 ≤ y+ ≤ 0.2h+ is not changed with different α. Figure 22(b) shows the
variations of the inner peaks u′2

c,m

+
as a function of Rel with different α. Although the

profiles shift upward with the increase of α, the constant growth rate of 1.27 is still
observed in 150 ≤ Rel ≤ 500.
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