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We examine the performance of wall-modeled large-eddy simulation (WMLES) to predict turbulent boundary

layers (TBLs) withmean-flow three-dimensionality. The analysis is performed for an ordinary-differential-equation-

based equilibriumwall model due to its widespread use and ease of implementation. Two test cases are considered for

this purpose: a spatially developing TBL in a square duct with a 30 deg bend, and the flow behind a wall-mounted

skewed bump with a three-dimensional separation bubble. In the duct simulation, WMLES is capable of predicting

mean-velocity profiles and crossflow angles in the outer region of the flow to within 1–5% error using 10 points per

boundary-layer thickness. The largest disagreement (20% error) is observed in the crossflow angles in the bend

region, where three-dimensional effects are the most significant. In the skewed bump simulation, it is shown that the

present equilibrium wall model with a grid resolution of about 40 points across the three-dimensional separation

region predicts mean-velocity profiles and separation location to within 1–3% error. The bubble size and vortex

structures in the bump wake are also correctly represented. It is demonstrated that WMLES is capable of achieving

accurate results in the separated region and its vicinity, provided that the strong shear layer generated at the apex of

the bump is well resolved.

Nomenclature

Ab = blockage area
D = duct side length
f = shedding frequency
H = bump height
h = channel half-height
Lx = computational domain size in streamwise direction
Ly = computational domain size in wall-normal direction

Lz = computational domain size in spanwise direction
NCV = number of control volumes
Nδ = number of control volumes across the boundary-layer

thickness
Nδ;bend = number of control volumes across the boundary-layer

thickness within the bend section
Q = mean-velocity magnitude
Q∞ = freestream value of Q
Reτ = Reynolds number
St = Strouhal number
U = streamwise mean-velocity component
Ubulk = bulk velocity
uτ = wall-shear velocity
V = wall-normal mean-velocity component
W = spanwise mean-velocity component
x = streamwise direction
xs = surface of the bump in the streamwise direction
x 0 = streamwise direction in the coordinate system aligned

with the local duct centerline
y = wall-normal direction

ys = surface of the bump in the wall-normal direction
y 0 = wall-normal direction in the coordinate system aligned

with the local duct centerline
z = spanwise direction
zs = surface of the bump in the spanwise direction
z 0 = spanwise direction in the coordinate system aligned

with the local duct centerline
γ = crossflow turning angles
γs = surface value of γ
γ∞ = freestream value of γ
Δs = grid resolution of the hexagonal close packed points
θ = bump rotation angle
ν = kinematic viscosity

I. Introduction

L ARGE-EDDY simulation (LES) has become an essential tool

for both fundamental studies and real-world engineering appli-

cations. However, industrial use of LES has been hampered by its

prohibitive grid-point requirements near the wall. This limitation

motivates the need for wall models to perform LES at a reduced cost

bymodeling small-scale near-wall eddies while resolving large-scale

eddies in the outer region [1–4]. Although wall-modeled LES

(WMLES) has emerged as a viable alternative to the computationally

more expensive wall-resolved LES [5], the performance of wall

models in nonequilibrium turbulent boundary layers with mean-flow

three-dimensionality (3DTBLs) has not yet been carefully assessed.

This assessment is particularly important because most widely used

wall models to date are built on equilibrium assumptions such as

mean-flow two-dimensionality and a statistically steady state.
Skewed mean-velocity profiles and nonequilibrium effects can be

caused by the lateral motion of the walls or the spanwise pressure

gradient imposed by the bounding geometry, among others. These

3DTBLs exist in a variety of practical problems, such as the bow and

stern regions of a ship, sweptback wings, curved ducts, and turbo-

machinery, to name a few. From the point of view of WMLES,

3DTBLs have peculiar features that are challenging tomodel.Among

these, we can highlight themisalignment of theReynolds stresses and

the mean rate of strain, as well as the counterintuitive depletion of

wall friction and Reynolds stress magnitude (e.g., Refs. [6–10]).
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Recently, WMLES of a temporally developing 3DTBL in a chan-

nel flow with a sudden imposition of spanwise pressure gradient was

conducted by Lozano-Durán et al. [11]. The authors considered three
wall-model approaches: an ordinary-differential-equation- (ODE)-

based equilibrium wall model [12], an integral nonequilibrium wall

model [13], and a partial-differential-equation-based nonequilibrium

wall model [14]. The performance of thewall models was assessed in
the transient channel flow at Reτ � uτh∕ν ≈ 1000, where uτ is the
wall-shear velocity, h is the channel half-height, and ν is the kin-

ematic viscosity. Lozano-Durán et al. [11] quantified the accuracy in

predicting the magnitude and direction of the wall stress for increas-
ing complexity of the wall model. Whereas the most comprehensive

wall model in terms of incorporating nonequilibrium effects out-

performed the simpler approaches, the equilibrium wall model pro-

vided the best tradeoff between accuracy when considering ease of
model implementation and computational cost.
Recent studies of WMLES in transient three-dimensional (3-D)

channel flows also include the works by Carton de Wiart et al. [15],

Yang et al. [16], and Bae et al. [17]. Carton de Wiart et al. [15]
investigated the performance of WMLES in several cases including

acceleration in the streamwise direction, and they showed that

WMLES is capable of predicting the wall stress with a good degree

of accuracy. Yang et al. [16] also attained accurate results using wall
modeling via physics-informed neural networks, whereas Bae et al.

[17] employed a novel Reynolds-averaged Navier–Stokes (RANS)-

free dynamic wall model to predict the wall stress. In addition to the

3-D channel flow configuration, Cho et al. [18] examined the per-
formance of the ODE-based equilibrium wall model for a spatially

developing 3DTBL inside a bent square duct at Reτ � 1200–2400,
following the experiment of Schwarz and Bradshaw [19]. The

authors reported a fairly good prediction of velocity and pressure

distributions, but with a measurable discrepancy of the crossflow
angles in the bend region where the mean three-dimensionality is

most pronounced. However, only oneWMLESmeshwas considered

without a grid convergence study.
Another important example of nonequilibrium flows can be found

in separated turbulent boundary layers.WMLESs have demonstrated

success in predicting trailing-edge separation of hydrofoils and air-

foils [14,20,21], as well as airfoils in high-lift configuration [22]. In

the recent NASA Juncture Flow Experiment [23], WMLES was
successful in recovering the trailing-edge separation bubble towithin

10% error using, on average, 10 points per boundary-layer thickness

[24], which is remarkable when considering the notably finer reso-

lutions used by RANS-based approaches [23]. Nonetheless, it is
unclear whether separated regions should be tackled with WMLES,

and the question of whether a wall model is needed in the separated

region remains unknown. The recent review by Bose and Park [2]
has also pointed out that the use of the no-slip boundary condition
might be justified in the separated region since there the flow is
governed by slow and large-scale eddies. In that case, it remains to
establish how to switch between the no-slip and wall-model boun-
dary conditions.
In this paper, we investigate the performance of WMLES with an

ODE-based equilibrium wall model to predict the 3DTBL in a bent
square duct and a skewed bump. A preliminary version of the present
work can be found in the works of Cho et al. [18,25]. The paper is
organized as follows.We first report on the performance of the ODE-
based equilibrium wall model in a spatially developing 3DTBL
inside a bent square duct, which is accompanied by a mesh conver-
gence study in Sec. II. In Sec. III, we assess the ODE-based equilib-
riumwallmodel for LES predictions of 3-D separated flows.A recent
experimental study byChing et al. [26] on flows over awall-mounted
skewed bump with 3-D flow separations is chosen for comparison.
Concluding remarks are offered in Sec. IV.

II. WMLES of a Spatially Developing 3DTBL in a Bent
Square Duct

A. Computational Details

The flow configuration of the bent square duct is shown in Fig. 1,
which follows the experimental setup by Schwarz and Bradshaw
[19]. The square duct has a 0.762 × 0.762 m cross section and a
streamwise length of 4.561 m. In thework of Schwarz and Bradshaw
[19], the boundary layer became turbulent by a trip wire with a
1.6 mm diameter. A spatially developing 3DTBL was generated by
a 30 deg bend that imposes a cross-stream pressure gradient, where
the boundary-layer thicknesses are about 3–7% of the duct side
length. The surface streamlines were deflected by up to 22 deg
relative to the centerline velocity vector. Downstream of the bend,
the developed 3DTBLgradually relaxes back to a turbulent boundary
layer with two-dimensional mean flow.
We define two coordinate systems following the reference experi-

ment (see Fig. 1). The first coordinate system �x; y; z� is aligned with
the upstream section of the bend, where x, y, and z denote the
streamwise, wall-normal, and spanwise directions, respectively. The
velocity vector in this coordinate system is denoted by �U;V;W�.
The second coordinate system �x 0; y 0; z 0� is aligned with the local
duct centerline.
WMLES is conducted using the code charLES with the Voronoi

mesh generator [27]. It solves the compressible LES equations with
the constant-coefficient Vreman model as the subgrid-scale (SGS)
model [28]. For all simulations, the coefficient of the Vreman model
is set to 0.07. The unstructured Voronoi mesh generator, based on a

Fig. 1 Flow configuration of the bent square duct. Here, the coordinate system �x 0; y 0; z 0� is aligned with the local duct centerline.
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hexagonal close packed (HCP) point-seeding method, is employed

to automatically build meshes for arbitrarily complex geometries

with minimal user input. Using this platform, high-quality meshes

are generated suitable for low-dissipation kinetic energy and entropy-

preserving numerical methods for high-fidelity LES [29]. To gener-

ate the grid, a surface geometry of the square duct is needed to

describe the computational domain, as shown in Fig. 1. Then, the

user specifies the coarsest grid resolution of the uniformly seeded

HCP points Δsmax. Clipped Voronoi diagrams are used to generate

arbitrary polyhedral cells, where the cell centers are related to these

HCP points. To efficiently distribute the points within a volume,

sphere packed arrangements are used, which generate uniform cells

in regions far from boundaries. Finally, the user can introduce local

mesh refinement by specifying volumes (i.e., refinement windows).

The length scale discontinuities at the interface of the refinement

windows are handled by introducing nested refinement layers

between the refinement windows and the coarsest resolution Δsmax

so that these length scale jumps are never worse than 1∶2. Addition-
ally, Lloyd iterations are used for mesh smoothing, which align the

near-wall cells normal to the surface and have a more uniform

distance than the original seeding. Therefore, the resulting Voronoi

cells are mostly isotropic. For the present WMLES, Δsmax is set to

0.01m and three differentmesh refinements are considered, as shown

in Table 1 and Fig. 2. The number of Lloyd iterations is 20 in all cases.

For case D1, the meshes are refined in the near-wall region so that the

number of grid cells across the local boundary-layer thickness Nδ

ranges from 8 to 11 along the streamwise direction. The minimum

cell size in the wall units is Δs�min � Δsminuτ∕ν � 140, and 30.4

million control volumes are used in total. Case D2 has additional grid

refinement, such that the number of control volumes across the

boundary-layer thickness within the bend section Nδ;bend increases

from 9 (case D1) to 13–15 (case D2) using 38 million control

volumes. In the finest grid resolution (case D3), Δsmin is further

reduced to 0.00125 m, resulting in Nδ;bend � 24 using 76.4 million

control volumes with 16 to 26 points per boundary-layer thickness.
Thewall-shear stress from the ODE-based equilibriumwall model

[12,20,30] is imposed as the boundary condition at the bottom, top,

and sidewalls. Thewall-shear stress from the equilibriumwall model

is obtained by integrating

d

dy

�
�μ� μt;wm�

duk
dy

�
� 0 (1)

d

dy

�
�μ� μt;wm�uk

duk
dy

� cp

�
μ

Pr
� μt;wm

Prt;wm

�
dT

dy

�
� 0 (2)

in a layer between y � 0 and y � hwm, where y is the wall-normal
direction, μ is the dynamic viscosity, μt;wm is the eddy viscosity, uk is
the wall-parallel velocity, cp is the specific heat at constant pressure,
Pr � 0.7 is the Prandtl number,Prt;wm � 0.9 is the turbulent Prandtl
number, and T is the temperature. The eddy viscosity is modeled
using the mixing length formula

μt;wm � κρy

������
τw
ρ

r
D (3)

D �
�
1 − exp

�
−
y�

A�

��
2

(4)

where κ � 0.4 is the von Kármán constant, ρ is the density, τw is the
wall-shear stress,D is the vanDriest damping function, andA� � 17
is a model coefficient. The walls �y � 0� are assumed to be iso-
thermal. The matching location �y � hwm� of the equilibrium wall
model is at the cell centers of the wall-adjacent control volume.
Temporally filtered LES data are provided to the wall model as
proposed by Yang et al. [31]. The characteristic-based nonreflective
outflow boundary condition is imposed at the outflow plane [32]. For
the inflow boundary condition, a synthetic turbulence boundary
condition is imposed to provide a realistic turbulent inflow condition
that matches the experiment in the upstream section of the bend. Note
that the experiment did not report the flow conditions near the trip
wire (x 0 � 0 m), and that the boundary-layer measurements are
available far downstream of the trip wire (x 0 > 0.826 m). This
mandated us to adopt an iterative procedure to adjust a suitable set
of inflow parameters to best match the flow condition at the reported
stations upstream of the bend. For this purpose, the location of the
computational inlet, the mean velocity therein, and the fluctuations
superimposed have been tuned. First, a uniform velocity of 26.5 m∕s
(the freestream value in the experiment) in the streamwise direction is
chosen as the mean-velocity field in the inflow plane. Random
fluctuations following the standard uniform distribution (�0.2%
the freestream velocity) are then applied to all velocity components.
Lastly, the development length (or the location of the computational
inlet relative to the bend) is determined by an iterative procedure: a
series of preliminaryWMLESs of a straight square duct are conducted
until themean-velocity profiles at x 0 � 0.978 in cases D1, D2, andD3
match the reference experiment reasonably well (see Fig. 3). The
computational domain so determined starts at x 0 � −0.813. Then,
the performance of theWMLES is evaluated at downstream locations.
The Reynolds number based on the duct side length (D � 0.762 m)
and the inlet freestream velocity (26.5 m∕s) is 1,400,000. The Reyn-
olds number based on the local momentum thickness and the free-
stream velocity ranges from 4000 to 9000 (Reτ � 1200–2400).

B. Results and Discussion

Figure 3 shows the profile of the mean-velocity magnitude �Q ���������������������
U2 �W2

p
� normalized with the local freestream value Q∞ as a

function of thewall-normal distance at various streamwise locations.
The velocity profiles from three grids (i.e., cases D1, D2, and D3)
are almost on top of each other at each streamwise location, which

Table 1 Case setup for the bent square duct

Case Δs (m) NCV Nδ Nδ;bend

D1 0.0025–0.01 30.4M 8–11 9
D2 0.0025–0.01 38M 8–21 13–15
D3 0.00125–0.01 76.4M 16–26 24

Fig. 2 Cross-section grids (y 0
–z 0 plane): a) case D1, b) case D2, and c) case D3.
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indicates that the WMLES solution has reached grid convergence.
For comparison, the results of the no-slip LES (without wall model)
using the same coarse mesh for case D1 are also included in the
figure.
In the upstream section of the bend at x 0 � 0.978 m, the WMLES

solution reproduces the upstream condition of the reference experi-
ment. The mean-velocity magnitude profiles inside the bend (at x 0 �
1.775 m and 2.075 m) and downstream section (at x 0 � 2.415 m and
2.948 m) are also predicted with reasonable accuracy. On the other
hand, the discrepancy between the experimental data and the result
from no-slip LES is remarkable, indicating the importance of
deploying the wall model at the present grid resolutions. In particular,
the mean-velocity profiles are overpredicted in the absence of the wall
model. This is a common outcome of LES on coarse gridswithoutwall
model, in which the lack of support for near-wall Reynolds stresses
translates into an excess of streamwise momentum [33].
Figure 4 compares the Reynolds stress profiles from the WMLES

to the experiment [19] at various streamwise locations. Here, u 0, v 0,
andw 0 indicate velocity fluctuations in streamwise, wall-normal, and
spanwise directions, respectively; and Uref � 26.5 m∕s. Consistent
with the mean-velocity profiles, the Reynolds stress profiles in all
cases almost overlap each other at each streamwise location, and they
are in reasonable agreement with the experiment. However, the
profiles of the no-slip LES (without wall model) using the mesh for
case D1 deviate significantly from the experiment.
The local skin-friction distribution along the centerline of the

square duct is shown in Fig. 5. The experimental data were reported
with 5%uncertainty bands, and the average error between the present
WMLES and the experimental data is 8%. Similar to the trends of
mean-velocity and Reynolds stress profiles, the skin friction exhibits
low sensitivity to different grid resolutions, and the no-slip LES
(without wall model) significantly underpredicts the skin friction.
The crossflow turning angles are defined as γ � tan−1�W∕U�,

where W and U are the spanwise and streamwise mean-velocity
components with respect to the upstream coordinates (x; y; z). The
variations of γ along the axial directions x 0 are represented in Fig. 6.
Hereafter, γ∞ is γ at the freestream, whereas γs is γ at the surface. The
results in Fig. 6a show that the angle γ∞ turns from 0 deg before the
bend to 30 deg after the bend, in accordance with the specified
geometry. Both WMLES (cases D1, D2, and D3) and no-slip LES
(D1 no-slip) predictions are almost on top of each other at the free-
stream region. The values of γ∞ from both the WMLES and no-slip
LES calculations also show an excellent agreement with the exper-
imental data. This can be ascribed to the essentially inviscid mecha-
nism responsible for the turning of the flow in the core region of the
square duct. Assuming an inviscid core region, it can be shown that
γ∞ ≈ θ, where θ is the geometric turning angle of the duct along the
bend. A small discrepancy with experiments (less than 2 deg) is
observed in Fig. 6 between the present simulation and the experiment
close to the end of the test section �x 0 > 3�. In a recent study, Hu et al.
[34] conductedWMLES of the same square duct configuration using
nonequilibrium wall models and observed a tendency similar to the
current WMLES for x 0 > 3. Schwarz and Bradshaw [19] reported

that the flow direction uncertainty was �1 deg, where the mean-

velocity field was obtained using a three-hole pressure probe.

Therefore, the difference between WMLES and experiments in the

downstream of the bend region may be partly due to experimental

uncertainties.

Figure 6b shows the streamwise development of γs − γ∞. The
initial increase of the surface crossflow angle upstream of the bend

section and its subsequent decrease are qualitatively captured by

WMLES for varying grid resolutions (D1, D2, and D3). However,

Fig. 4 Reynolds stress profiles at x 0 � 0.978 and 1.435 m (upstream
section of bend); x 0 � 1.775 and 2.075 m (inside the bend); and x 0 �
2.415 and 2.948 m (downstream section of bend). Here, profiles
at x 0 � 1.435; 1.775; 2.075; 2.415, and 2.948 m are shifted by 6, 12,

18, 24, and 30 on the horizontal axis, respectively: a) u 02∕U2
ref × 1000,

b) v 02∕U2
ref × 1000, and c) w 02∕U2

ref × 1000. Lines denote present

WMLES (cases D1, D2, and D3); circles denote experiment [19]; and
dashed lines denote no-slip LES on case D1 mesh (without wall model).

Fig. 3 Mean-velocity profiles at x 0 � 0.978 m (upstream section of bend); x 0 � 1.775 and 2.075 m (inside bend); and x 0 � 2.415 and 2.948 m
(downstream section of bend). Here, profiles at x 0 � 1.775, 2.075, 2.415, and 2.948 m are shifted by 1, 2, 3, and 4 on the horizontal axis, respectively.
Lines denote presentWMLES (cases D1, D2, and D3); circles denote experiment [19]; and dashed lines denote no-slip LES on case D1mesh (without wall
model).
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the magnitude of γs − γ∞ is underpredicted near the bend region by
about 20%. These differences between the WMLES and experimen-
tal data are mainly localized within the bend, and they decrease as the
3DTBL gradually recovers to the two-dimensional turbulent boun-
dary layer in the downstream section. Refining the WMLES grid
resolution (caseD3) provides a slight improvement in the bend region
compared to coarser grids (cases D1 and D2), but the difference is
marginal. The mismatch betweenWMLES and experiment along the
duct bend can be attributed to various causes. The first one is related
to the methodology employed to obtain γs. Strictly speaking, the

angle γ at the wall is γs � limy→0 tan
−1�W∕U� � tan−1�τW∕τU�,

where τW and τU are the averaged spanwise and streamwise wall
stress, respectively. In the current WMLES, γs is obtained from the
tangential wall-stress streamlines after the wall stress is averaged in
time. Experimentally, the γs is measured by oil-flow visualizations at
the wall after initial transients of the oil. Albeit both methodologies
provide a reasonable description of γs, they do not allow for fully
consistent one-to-one comparison, which may prompt some dis-
agreement between both results. The second cause for the large errors
in γs − γ∞ is probably more noteworthy, and it arises from the wall-
modeling assumptions in Eq. (1). The equilibrium approximation of
the current wall model is such that the wall stress vector is aligned
with the wall-parallel velocity at the first off-wall location, γs �
tan−1�W�x;Δs; z�∕U�x;Δs; z��, which might result in large errors
under the presence of acute mean three-dimensionality [11]. It also
implies that the mesh refinement alone without the aid of nonequili-
brium wall models will not improve the WMLES solution unless the
LES grid is able to resolve the three-dimensionality of themean flow.
Hu et al. [34] recently reported that the equilibrium wall model with
theminimumwall-normal grid size of 30 inwall units (2.3 times finer
than the finest case D3) still showed a discrepancy in predicting the

mean three-dimensionality in the bend region. However, changing

the equilibrium wall model to partial-differential-equation (PDE)

nonequilibrium wall model was shown to improve the performance

of the WMLES.
Figure 7 shows γ − γ∞ as a function of the wall-normal direction

and complements the picture provided by Fig. 6. The crossflow angle

increases until the end of the bend section (Fig. 7a) and decays in the

downstream section (Fig. 7b). Figure 7 also shows that the current

WMLES predicts the crossflow development and decay, although the

angles are smaller than those in the experiment. Consistent with

Fig. 6, the discrepancy betweenWMLES and experiments in γ − γ∞
increases with the crossflow development, and it decreases after the

bend once the flow starts relaxing to a turbulent boundary layer with

two-dimensional mean flow. Figure 7 also shows that no-slip LES

significantly underperforms WMLES, but the lack of further

improvements with mesh refinements in WMLES hints to the neces-

sity of nonequilibrium wall-modeled accounting for 3-D nonequili-

brium effects as discussed earlier in this paper.
A common approach to quantify the 3-Dcharacteristics of themean-

velocity profile is to construct the so-called triangular plot, which

comprises the normal Un and streamwise Us components of the

velocity with respect to the freestream velocity Ue. Here, we use the

triangular plot to further evaluate the capability of WMLES to predict

mean-flow three-dimensionality. The results, included in Fig. 8, show

that current WMLES cases are in reasonable agreement with the

experimental data. The freestream flow is represented by �Us;Un� �
�1; 0�. BothWMLES and experimentsmatch forUs∕Ue > 0.7, which
corresponds to the upper part of the boundary layer. Although not

shown, it was also assessed that in this region, WMLES follows the

expected inviscid relationship Un ≈ 2�γ − γ∞��Ue −Us�. The apex

of maximum crossflow occurs at Un∕Ue ≈ 0.2, which is also well

Fig. 5 Local skin-friction distribution along streamwise direction x 0. Lines denote present WMLES (cases D1, D2, and D3); circles denote experiment
[19]; and dashed lines denote no-slip LES on case D1 mesh (without wall model).

Fig. 6 Crossflow turning angles: a) freestream turning angle γ∞ distribution along streamwise direction x 0, and b) surface crossflow angle relative to
freestream (γs − γ∞) along streamwise direction x 0. Lines denote presentWMLES (casesD1,D2, andD3); circles denote experiment [19]; anddashed lines
denote no-slip LES on case D1 mesh (without wall model).
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captured by WMLES. The most noticeable difference between
WMLES and experiments is the absence of velocities in the range
Us∕Ue < 0.6 for cases D1 and D2 because these values of Us are
located in the near-wall region of the boundary layer, which is unre-
solved by their grids. However, the refined grid from D3 is able to
correctly predict the experimental values closer to the wall. On the
other hand, the no-slip LES case (without wall model) deviates sig-
nificantly from the experiment: the values attained by Un are roughly
half of those fromWMLES and experiments, which points at a lack of
three-dimensionality in the mean profile of case D1noslip, consistent

with the angles reported in Fig. 7.

III. WMLES of a Three-Dimensional Flow Separation
Behind a Skewed Bump

A. Computational Details

The computational setup for the three-dimensional skewed bump
is illustrated in Fig. 9, which follows the study by Ching et al. [26].
The bump is mounted on the bottom wall of a square duct, and its
surface is defined by [26,35,36]

ys � H

2
40.5� 0.5 cos

0
@2π

�����������������
x2s
b2

� z2s
a2

r 1
A
3
5 (5)

for �x2s∕b2� � �z2s∕a2� < �1∕4�, where xs; ys, and zs denote the sur-
face of the bump in the streamwise, wall-normal, and spanwise
directions, respectively; H�� 19 mm� indicates the bump height,
and the parameters a and b are 57 and 42.75 mm, respectively. Here,

the coordinates xs and zs are definedwith respect to the bump rotation
angle θ,

xs � x cos�θ� � z sin�θ� (6)

zs � x sin�θ� − z cos�θ� (7)

The bump angle in the present study is at θ � 10 deg. The origin
of the coordinate system is located on the bottom wall below the
center of the bump and the Reynolds number based on the bulk
velocity (0.83 m∕s), and the bump height is 16,000. The Reynolds
number based on thewall-shear velocity and the local boundary-layer
thickness at x∕H � −4 is 560. This is a relatively low-Reynolds-
number case compared to the bent square duct simulation, whereReτ
ranges from 1200 to 2400.
We compare the WMLES results with those from experimental

andLES studies [26,36]. Previous experiments and simulations of the
present axisymmetric bump have shown that the flow over the bump
separates near the top due to the development of an adverse pressure
gradient; i.e., the separation point is not determined by the bump
geometry [26,35,36]. A large separation bubble is formed in thewake
of the bump, where a common-up vortex pair appears in the mean
flow field. Further downstream, this common-up vortex pair evolves
into a common-down vortex pair.
We use the same flow solver, charLES, with the Voronoi mesh

generator. The boundary conditions for the skewed bump are similar
to those of the bent square duct (see Sec. II.A). At the inlet, we
prescribed a synthetic turbulence boundary condition, with random
fluctuations (�1.5% the freestream velocity) added to the spatially

Fig. 8 Triangular plot of velocity: a) crossflow development at x 0�m� � 1.676; 1.875, and 2.075; and b) crossflow decay at x 0�m� � 2.338; 2.491; 2.948,
and 3.634. Lines denote present WMLES (cases D1, D2, and D3); circles denote experiment [19]; and dashed lines denote no-slip LES on case D1 mesh
(without wall model).

Fig. 7 Crossflow angle relative to freestream: a) crossflow inside bend at x 0�m� � 1.676; 1.875, and 2.075; and b) crossflow in downstream section of
bend at x 0�m� � 2.338; 2.948, and 3.329. Here, profiles at x 0 � 1.875 and 2.948m are shifted by 30 deg and profiles at x 0 � 2.075 and 3.329m are shifted
by 60 deg on the horizontal axis, respectively. Lines denote present WMLES (cases D1, D2, and D3); circles denote experiment [19]; and dashed lines
denote no-slip LES on case D1 mesh (without wall model).
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uniform freestream velocity of 0.83 m∕s. The length of the upstream
development section is determined in a separateWMLES of a square
duct with the bump removed by matching the mean-velocity profiles
at x∕H � −4 in casesB1–B4 from the reference experiment.Then,we
examine the performance of the WMLES at downstream locations.
TheODE-based equilibriumwallmodel fromEqs. (1) and (2) is used to
obtain thewall-shear stress at the bottom, top, and sidewalls,which are
also assumed isothermal. The Navier–Stokes characteristic boundary
condition is imposed at the outlet [32].

The computational domain size is Lx × Ly × Lz � 575.7 mm×
50 mm × 100 mm. We investigate the grid requirements to capture

the correct flow physics of different flow regions by considering a set

of four grid resolutions, which are summarized in Table 2 and

depicted in Fig. 10. For all the cases, the coarsest grid resolution is
set to 0.1H, and the meshes are refined around the bump and the

bottom wall (−4.5H < x < 5.5H; 0 < y < 1.7H;−2H < z < 2H; see

red-colored region in Fig. 10) such that the grid size in that region is

0.025H. The boundary-layer thickness at x∕H � −4 is half the
height of the bump (0.5H), and the boundary-layer thickness

increases in the streamwise direction until it is affected by the adverse

pressure gradient as the boundary layer approaches thewall-mounted

bump. The present isotropic Voronoi cells result in 20 cells across the
boundary-layer thickness at x∕H � −4. For case B2, an additional

refinement window with a grid size equal to 0.012H is added to case

B1 around the bump and the bottom wall (−1.5H < x < 3.5H;
0 < y < 1.2H;−1.8H < z < 1.8H; see green-colored region in
Fig. 10). For case B3, the refinement window with the grid size of

Table 2 Case setup for the skewed bump

Case Δs∕H NCV Nδ;x∕H�−4

B1 0.025–0.1 6.7M 20
B2 0.012–0.1 19M 20
B3 0.006–0.1 10.8M 20
B4 0.006–0.1 22.3M 20

Fig. 9 Flow configuration of the skewed bump. The coordinate origin is located on the bottom wall under the center of the bump.

Fig. 10 Schematic diagram of the mesh refinement.
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0.006H is added to case B1 on top of the bump (−0.4H < x <
0.4H; 0.7H < y < 1.1H;−1.2H < z < 1.2H; see blue-colored region
in Fig. 10). Lastly, for case B4, both refinement windows used in

cases B2 and B3 are included into case B1 to assess grid conver-
gence. The total number of smoothing iterations is 20 in all cases. It
is worth noting that our grids are in the range of ≈ 7–22million
control volumes (Table 2), whereas Ching et al. [26] employed
80 million control volumes to perform the wall-resolved LES of
the bump. This outlines the computational savings of WMLES

(about four to eight times), despite the moderate Reynolds number
of the present case.

B. Results and Discussion

To illustrate the mean-flow configuration across the bump, Fig. 11
shows the mean streamwise velocity contours on the centerplane
(i.e., z∕H � 0) for case B3. The flow separates near the top of the

bump (x∕H ≈ 0) and reattaches at x∕H ≈ 2, generating a large sepa-
ration bubble behind the bump. Figures 12–14 contain the mean
streamwise velocity profiles at various streamwise locations for
WMLES along with the reference experiment and LES data [26,36].
At the upstream section of the bump (Fig. 12) and thewindward side of
the bump before the separated region (Fig. 13a), WMLES predicts

velocity profiles towithin 1%error, regardless of themeshdistribution.
The good agreement of the mean velocity with LES data at the
upstream section of the bump (x∕H � −4) also verifies the adequacy
of the inlet boundary condition generated by the synthetic turbulence.
Further downstream, the velocity profiles at the leeward side of

the bump (Fig. 13b) and at x∕H � 3 in the downstream section of the
bump (Fig. 14) are sensitive to the grid resolution. In case B1, the
mean-velocity distributions at the leeward side of the bump (Fig. 13b)
and at x∕H � 3 (Fig. 14) disagree with the reference experiment and

LES by up to 20% error. These locations are inside and right behind
themain separation bubble, respectively, whereWMLES predictions
are expected to be the most challenging. Nonetheless, the discrep-
ancy between the WMLES and reference cases is greatly reduced
with the additional grid refinements from cases B2–B4, bringing the
predictions to within 1% agreement with the reference LES and
experiments. Note that case B2 is set to contain the main separation

bubble within the green-colored refined region, and case B3 is set to
include additional grid cells around the separation point. Overall, the

statistics from case B2 and case B3 show remarkable differences,

whereas the statistics from case B3 are comparable to case B4 as well

as those from the reference studies. Consequently, resolving the thin

separated shear layer near the apex (i.e., the blue refinement window

in Fig. 10) plays an important role in the successful prediction of the

3-D separated region. This is in agreement with previous WMLES

studies in complex geometries [14,21,37,38], which have shown the

importance of resolving separated shear layers with proper grid

resolution to accurately capture the flow in their vicinity [2]. This

observation is also consistent with the analysis from Lozano-Durán

and Bae [33], who showed that the errors incurred by WMLES in a

given region of the flow scale with the mean shear. Finally, in the far

downstream of the separation bubble at x∕H � 5, the effect of the
3-D separation is weakened and WMLES predicts velocity profiles

for all mesh resolutions with reasonably good accuracy.

Fig. 11 Contours ofmean streamwise velocity atz∕H � 0 fromcaseB3.

Fig. 12 Mean-velocity profiles in upstreamsection of bumpatx∕H � −4 and−2.Here, profile atx∕H � −2 is shiftedby twoon the horizontal axis. Lines
denote presentWMLES (casesB1,B2,B3, andB4); dashed lines denote no-slipLESon caseB3mesh (withoutwallmodel); anddashed–dotted lines denote
LES [36]. Shown to highlight differences in the near-wall region, profiles up to a) y∕H � 1.7, and b) y∕H � 0.2.

Fig. 13 Mean-velocity profiles over the bump: a) windward side at
x∕H � −1; − 0.8, and −0.4; and b) leeward side at x∕H � 0.4; 0.8, and
1. Here, profiles at x∕H � −0.8 and 0.8 are shifted by two and profiles at
x∕H � −0.4 and 1 are shifted by four on the horizontal axis, respectively.
Lines denote present WMLES (cases B1, B2, B3, and B4); dashed lines
denote no-slip LES on case B3mesh (withoutwall model); dashed–dotted
lines denote LES [36]; and circles denote experiment [26].
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Abetter insight into the separation zone is shown in Fig. 15, which

portrays a zoomed-in view of the streamwise velocity contours at
z∕H � 0 from cases B1–B4. In the reference LES study [36], the

separation point on the centerplane was shown to be located around

x∕H � 0. Here, the separation point is delayed in cases B1 and B2,

whereas cases B3 and B4 exhibit a similar separation point to that of

Ching and Eaton [36]. The difference between Figs. 15b and 15c

highlights again the importance of resolving the shear layer near the

apex of the bump, which largely affects the bubble size and reattach-

ment. In addition to the main large separation bubble discussed

earlier in this paper, a thin secondary separation bubblewas observed

at the leeside of the bump by Ching and Eaton [36] in the range

0.1 < x∕H < 0.3. InWMLES, this secondary bubble is too thin to be
accurately capturedwith the current grid resolution; however, Fig. 15
shows that cases B2–B4 are able to capture an incipient separa-
tion zone.
For comparison, the velocity profiles from the no-slip LES

(i.e., without the wall model) on the same mesh as case B3 are also
included in Figs. 12–14 and denoted byB3no-slip (red dashed lines). In
the upstream section of the bump (Fig. 12), B3no−slip deviates slightly

from WMLES and the experimental results in the near-wall region.
However, velocity profiles over the bump (Fig. 13) predicted from the
no-slip LES coincide with those from case B3. This indicates that the
contribution of the equilibrium wall model in these regions is negli-
gible; hence, the equilibrium wall model naturally deactivates in the
separated region at the grid resolution of case B3. We can also argue
that further grid refinements would most probably lead to similarly
accurate results because the ODE-based equilibrium wall model is
consistent with the no-slip condition in the limit of y� → 0. Conse-
quently, the use of the equilibrium wall model in the present 3-D
separated region does not hinder the performance ofWMLES for grid
resolutions equal to or below those in case B3. Finally, right after the
separation bubble atx∕H � 3, no-slipLES slightlyunderperforms the
WMLES, but this deviation becomes marginal at x∕H � 5 in Fig. 14.
Figure 16 compares the Reynolds shear stress �u 0w 0� contours at

y∕H � 0.5 from case B3 to the reference LES [36]. Ching and Eaton
[36] reported that these contours suggest spanwise movements of the
wake because positive streamwise fluctuations are correlated with
spanwise fluctuations toward the centerline. The Reynolds shear
stress contours predicted from the WMLES show reasonable agree-
ment with the LES, implying that the flow physics in the bump wake
region is accurately captured.
Figure 17 illustrates the vortex structures downstreamof the bump.

As reported in previous studies [26,35,36], a common-up vortex pair

Fig. 14 Mean-velocity profiles in downstream section of bump at
x∕H � 3 and 5. Here, the profile at x∕H � 5 is shifted by two on the
horizontal axis. Lines denote presentWMLES (casesB1,B2,B3, andB4);

dashed lines denote no-slip LES on case B3 mesh (without wall model);
dashed–dotted lines denote LES [36]; and circles denote experiment [26].

Fig. 15 Contours of mean streamwise velocity at z∕H � 0 showing separation point and secondary separation bubble: a) case B1, b) case B2, c) case B3,
and d) case B4.
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is captured in the separation bubble right behind the bump. This

vortex pair evolves into a common-down vortex pair in the far

downstream at x∕H � 4.0. Not only the mean structures but also

the shedding frequency behind the bump are captured in the current

WMLES, as shown by the velocity power spectra from the probes in

thewake region in Fig. 18. Following Ching et al. [26] and Ching and

Eaton [36], the Strouhal number is defined as

St � f
������
Ab

p
Ubulk

(8)

where f is the shedding frequency, Ab is the blockage area, andUbulk

is the bulk velocity. The shedding frequency from the WMLES
matches the reference LES.

IV. Conclusions

The performance of wall-modeled LES in predicting turbulent
boundary layers with mean-flow three-dimensionality was investi-
gated using an ODE-based equilibrium wall model. Two cases were
considered: a spatially developing 3DTBL inside a bent square duct
[19], and 3-D separated flows in a skewed bump [26,35,36]. In the
square duct simulation, WMLES was capable of predicting mean-
velocity profiles and crossflow angles in the outer region of the flow
to within 1–5% error using 10 points per boundary-layer thickness.
However, 20% error was observed in the crossflow angles near the
wall in the bend region where the nonequilibrium effects are most
significant. This error persistedwith increased grid resolution, imply-
ing that grid refinement alone without the use of nonequilibrium
wall models may not improve the solution in the presence of skewed
mean-velocity profiles in the near-wall region. WMLES of the wall-
mounted skewed bump showed that the ODE-based equilibrium
wall model with a grid resolution of about 40 points across the 3-D
separation region predicts the mean-velocity profiles, shedding fre-
quency, and separation location to within 1–3% error. Grid refine-
ment analysis of the bump simulations showed that resolving the
incipient flow separation and associated thin shear layer is crucial to
attain accurate predictions. Within the separation zone, the current
results indicate that WMLES performs well, and reverting to the no-
slip boundary condition is not necessary, provided adequate grid
resolution is used across the bubble.
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