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Abstract Some recent developments on the physical mechanism of turbulence cas-
cades are summarised. It is first shown that the energy cascade in statistically steady
isotropic turbulence is local in scale, at least on average, and that temporal varia-
tions of the large-scale forcing are transferred to smaller scales as a ‘wave’ consis-
tent with the classical Kolmogorov model. It is further shown that, when energy-
containing structure are individually tracked in band-pass filtered velocity fields,
they also behave classically. The correlation of their physical position with larger
(or smaller) structures is highest towards the beginning (or end) of their lifetimes.
The analysis is then extended to the structures of momentum flux in the logarith-
mic layer of turbulent channels. Small structures grow and shrink smoothly along
their lifetimes, but larger ones change size mostly by splits and mergers involving
structures of similar size. For the largest structures, splits predominate, although not
overwhelmingly.

1 Introduction

Cascades are required whenever a conserved quantity has to be transferred across a
range of scales but, beyond that generic idea, every particular instance of multiscale
transport requires a physical implementation that does not have to be the same in all
cases. In fact, it is probably always true in high-dimensional systems that cascades
include a variety of mechanisms that transfer the conserved quantity in different
directions, in such a way that a one-directional transfer across scales is only true as
a statistical average. The main problem lies in the traditional idea of scale, which,
because of the Fourier uncertainty principle, only takes a definite meaning when
averaged over a region of space larger than the scale in question. Based on the
general idea that the Navier–Stokes equations are local PDEs in physical, but not in
scale space (e.g. Fourier), our group have tried for some time to ascertain whether
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some component of the various transfers in turbulence can be identified locally in
physical space, and to clarify their mechanisms. We primarily do this by isolating
individual intense structures, and tracking them in space, time and, occasionally, also
across scales.

2 The Energy Cascade

The best-known example of a turbulent cascade is the transfer of kinetic energy in
equilibrium isotropic turbulence [4]. If energy is fed by some large-scale forcing, it is
transferred to the Kolmogorov scale, η, to be dissipated by viscosity, but the manner
in which this happens has been the subject of endless discussions. We will first
present evidence that the transfer is local in scale, at least on average. For example,
Fig. 1a shows that, when the flow is separated into scale bands by filtering, and the
forcing is unsteady, the unsteadiness of the sub-grid energy transfer, Σ = −〈τi j Si j 〉,
where τi j is the subgrid Reynolds stress tensor at the chosen filter width, and Si j
is the filtered rate of strain, moves towards bands of smaller scale as a ‘wave’ [1].
The mean 〈·〉 refers to the time-dependent instantaneous average over the whole
computational box. Moreover, the evolution of the transfer rate is self-similar, as
posited by Kolmogorov, in the sense that the delay required by the energy to cross
an octave of scales centred at r is proportional to the local eddy turnover, r2/3/ε1/3,
where ε is the ensemble-averaged energy dissipation rate (Fig. 1b).

The energy cascade in isotropic turbulence is also local in physical space [2].
The band-filtered fields used in [1] can be segmented into individual structures of
intense energy, and these structures can be followed in time. In a first approach, the
evolution in this five-dimensional space (three spatial dimensions, scale, and time)

(a)

(b)

Fig. 1 a Time-scale diagram of Σ(r), with the filter width r decreasing from top to bottom and the
instantaneous mean dissipation 〈ε〉 added as the bottom band. Isotropic turbulence at microscale
Reynolds number Reλ = 384. The dashed-dotted line corresponds to ε1/3Δt = (250η)2/3 − r2/3.
b Dimensionless average delay between the energy transfer at two filter widths, r > ra . Several
homogeneous flows. The slope of the solid line is linear. Reproduced with permission from [1]



The Turbulence Cascade in Physical Space 47

0 0. 2 0. 4 0. 6 0. 8 1

t / Tlife

0

20

40

Fig. 2 Intersection ratio of individual structures of size rA with the set of all structures of size rB ,
separated from rA by a factor of two. Normalised to unity for random sets, and plotted as function
of the time within the life of each structure. ◦, rA/η = 30; �, 60; �, 120; �, 240. Solid symbols
are for rB = rA/2; open ones are rB = 2rA. Error bars are two standard deviations. Adapted with
permission from [2]

is too complex to have allowed tracking each structure individually up to now, but it
can be handled statistically. A measure of how related are the location of two flow
scales is the volume of the intersection of their intense structures, which has to be
compared to the null hypothesis of randomly located point sets with the same overall
volume fractions. It is found that structures in energy bands separated by a factor of
2 are more correlated than random, but that those separated by 4 or more are not [2].
This could simply be a sign of spectral leakage in the filter, but the structures are
also tracked in time, so that each of them has a lifetime (which, not surprisingly, is
proportional to r2/3), and the evolution of its correlation can be measured. Figure2
shows that structures of size r aremore strongly correlated with those of size 2r at the
beginning of their life than at the end. The opposite is true for their correlation with
smaller structures of size r/2, in strong agreement with a process in which energy
passes from larger to smaller structures at the same physical location.

3 Momentum Transfer in Shear Flows

Another conserved quantity whose transfer is important is the flux along the wall-
normal (y) direction of streamwise momentum in turbulent shear flows. Tradition-
ally, momentum is considered to be carried by the tangential Reynolds stress, uv,
defined as the product of the streamwise and wall-normal velocity fluctuations. The
structures (Qs) of particularly intense uv are often treated as important momentum
carriers [8], and their organisation is different from that of the energy structures in
isotropic turbulence. Only ‘large’ structures couple strongly enough to the shear of
the mean velocity, S = ∂yU , to carry net mean momentum. But the shear in the
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Fig. 3 Sketch of a simple
evolution graph for Qs. Time
increases from left to right,
and the graph includes a
split. Structure size is
characterised by the diagonal
	 of its circumscribed
parallelepiped

inertial (logarithmic) layer of a wall-bounded flow changes as the inverse of the dis-
tance from the wall, and the result is that the inertial momentum-carrying Qs form
a self-similar hierarchy of different scales in which most relevant Qs are attached
to the wall, in the sense that their size is proportional to their distance from it. The
transfer of momentum across this hierarchy is a problem that has to be understood
as much as the Kolmogorov energy cascade, because equilibrium has to be main-
tained across scales, and the result determines the scaling parameters for the overall
flow; for example, it defines the friction velocity as the uniform velocity scale in
wall-bounded turbulence (and therefore the drag coefficient).

Three-dimensional Qs are studied for turbulent channels in [5], and tracked indi-
vidually in time in [7]. They are found to grow and decay while they merge and split
in complicated temporal graphs that have to be parsed to understand their evolution
(Fig. 3). In agreement with their inertial character, their lifetime is proportional to
their size, but, somewhat surprisingly given that they are mostly attached to the wall,
they are not found to be particularly connected with it. Roughly half of the Qs are
born near the wall and move away from it, while the other half do the opposite. In
fact, Qs were studied in [3] for homogeneous shear turbulence, which shares with
wall-bounded turbulence the role of the shear as a source of momentum transfer and
of turbulent energy, but which has nowalls. Its Qs differ very little from those in wall-
bounded flows, showing that they are a consequence of the shear, rather than of the
neighbourhood of the wall. The relevant condition for Qs to participate inmomentum
transfer is that they should be larger than the local Corrsin scale, Lc = (S3/ε)1/2.
But Lc ∼ y in the logarithmic layer of wall-bounded flows, and most Qs larger than
Lc are also too large to fit in the flow without hitting the wall. They are therefore
attached.

From the point of view of the present paper, the most interesting question is the
relevance ofmerging and splitting in the growth anddecay of themomentum-carrying
structures. Because Qs are defined by thresholding an intense property (uv), they are
born and die as small structures, which at first grow in volume and later shrink. Part of
this evolution is a smooth variationwith time as a consequence of their intensification
and weakening. Figure4a shows that this accounts for most of the change in volume
for Qs smaller than about 100 wall units (defined by the kinematic viscosity and
the friction velocity, and denoted by a ‘+’ superscript). Above that threshold, all Qs
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Fig. 4 a Fraction of the number of Qs that split (solid line) or merge (dashed) at least once in their
lives, as a function of their mean diagonal size averaged over their lifetime. bVolume ratio between
the direct (splits) and inverse (merge) cascade events, as a function of the size of the smallest and
largest fragments in the interaction. The dashed line is 	s = 0.4	b, and the solid one in 	s = 	b.
Contours are, from light to dark, 1.1(0.2)1.7. Both figures refer to Qs above the viscous wall layer
of a turbulent channel with friction Reynolds number Reτ = 4200 [6]

merge or split at least once in their life, and it can be shown that between 50 and 70%
of the volume change of the largest Qs is due to these discontinuous events. If we
interpret the mergers as an inverse cascade to larger volumes, and the splits as a direct
cascade, the direct cascade predominates, although not by a large margin (rough 1.3
on average). Figure4b shows that, disregarding the smallest Qs that cascade seldom,
the direct cascade is a property of large structures that break into (or merge from)
fragments of comparable size. Small fragments of large eddies have almost the same
probability of merging as of splitting, but a large attached Q is roughly twice more
likely to break in half than to be created from two comparable fragments.

In summary, the above examples show that cascades in turbulence can be associ-
ated to definite interactions that take place locally in physical space between entities
of comparable size. In general, both direct and inverse events occur, leading respec-
tively to the generation of smaller and of larger structures, but, in all our examples,
the direct cascade predominates.

Funded in part by the Multiflow and Coturb projects of the European Research
Council.
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