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We investigate the error scaling and computational cost of wall-modeled large-eddy simulation (WMLES) for

external aerodynamic applications. The NASA Juncture Flow is used as representative of an aircraft with trailing-

edge smooth-body separation. Two gridding strategies are examined: 1) constant-size grid, in which the near-wall

grid size has a constant value and 2) boundary-layer-conforming grid (BL-conforming grid), in which the grid size

varies to accommodate the growth of the boundary-layer thickness. Our results are accompanied by a theoretical

analysis of the cost and expected error scaling for the mean pressure coefficient Cp and mean velocity profiles. The

prediction of Cp is within less than 5% error for all the grids studied, even when the boundary layers are marginally

resolved. The high accuracy in the prediction of Cp is attributed to the outer-layer nature of the mean pressure in

attached flows. The errors in the predictedmean velocity profiles exhibit a large variability depending on the location

considered, namely, fuselage, wing-body juncture, or separated trailing edge. WMLES performs as expected in

regions where the flow resembles a zero-pressure-gradient turbulent boundary layer such as the fuselage (<5%
error). However, there is a decline in accuracy ofWMLES predictions of mean velocities in the vicinity of wing-body

junctions and,more acutely, in separated zones. The impact of the propagation of errors from the underresolvedwing

leading edge is also investigated. It is shown that BL-conforming grids enable a higher accuracy in wing-body

junctions and separated regions due to the more effective distribution of grid points, which in turn diminishes the

streamwise propagation of errors.

Nomenclature

B = intercept constant for the log law
Cp = surface pressure coefficient
L = crank chord, mm
Nbl = point per boundary-layer thickness
Npoints = total number of points of wall-modeled large-eddy

simulation
Re = Reynolds number based on the crank chord and free-

stream velocity
Remin

Δ = Reynolds number based onΔmin and freestreamvelocity
T = temperature, K
U∞ = freestream velocity, m∕s
u,
v, w

= streamwise, vertical, and spanwise instantaneous
large-eddy simulation velocities, m∕s

uI = inviscid solution, m∕s
uk = wall-parallel velocity, m∕s
uτ = friction velocity
ν = fluid kinematic viscosity, kg∕m3

x, y, z = coordinates in the streamwise, vertical, and spanwise
directions, mm

xk, zk = coordinates wall-parallel to the aircraft surface, mm
y⊥ = wall-normal direction to the aircraft surface, mm
αq = exponent of the error power law for a quantity q
βq = constant of the error power law for a quantity q

Δ = grid resolution, mm
δ = boundary-layer thickness based on 99% of the free-

stream velocity, m
εq = relative error in the quantity q
κ = Kármán constant for the log law
ρ = fluid density, kg∕m3

τw = tangential shear stress at the wall
h⋅i = time-average operator
�⋅� 0 = fluctuating quantity
k ⋅ kn = L2-norm over the spatial coordinates.

I. Introduction

T HE use of computational fluid dynamics (CFD) for external
aerodynamic applications has been a key tool for aircraft design

in the modern aerospace industry [1–3]. CFD methodologies with
increasing functionality and performance have greatly improved our
understanding and predictive capabilities of complex flows. These
improvements suggest that certification by analysis (CBA) i.e., pre-
diction of the aerodynamic quantities of interest by numerical sim-
ulations [4], may soon be a reality. CBA is expected to reduce the
number ofwind-tunnel tests, reducing both the turnover time and cost
of the design cycle [5]. However, flow predictions from the state-of-
the-art CFD solvers are still unable to comply with the stringent
accuracy requirements and computational efficiency demanded by
the industry [6]. These limitations are imposed, largely, by the defiant
ubiquity of turbulence. In the present work, we investigate the cost
and performance of wall-modeled large-eddy simulation (WMLES)
to predict quantities of interest in the NASA Juncture Flow Experi-
ment [7].
One of themajor challenges inCFD is the prediction of corner flow

and smooth-body separation [8,9]. In the latter, the loss ofmomentum
across the boundary layer eventually leads to flow detachment, which
can significantly affect the performance of an aircraft wing. In wing-
fuselage junctures, the flow is often observed to separate in the corner
region near thewing trailing edge. This is also the case at the angles of
attack (AOA) typically encountered during takeoff and landing [10].
Current turbulence models, such as those used in Reynolds-averaged
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Navier–Stokes CFD (RANS), have performed poorly in predicting
the onset and extent of the three-dimensional separated flow in wing-
fuselage junctions [11]. These deficiencies have been exposed in
previous AIAA drag prediction workshops [12], where large varia-
tions in the prediction of separation, skin friction, and pressure were
documented in the corner-flow region near the wing trailing edge.
To advance the state of the art of CFD in realistic separated flows,

NASA has developed a validation experiment for a generic full-span
wing-fuselage junction model at subsonic conditions: the NASA
Juncture Flow Experiment. The reader is referred to Rumsey et al.
[7] for a summary of the history and goals of the experiment (see also
[13,14]). The geometry and flow conditions are designed to trigger
flow separation in the trailing-edge corner of the wing, with recircu-
lation bubbles varying in sizewith the AOA. Themodel is a full-span
wing-fuselage body that was configured with truncated DLR-F6
wings, both with and without leading-edge horn at the wing root.
The model has been tested at a chord Reynolds number of 2.4 ×106,
and AOAs ranging from −10 deg to �10 deg in the Langley 14- by
22-foot subsonic tunnel. An overview of the experimental measure-
ments can be found in Kegerise et al. [15]. The main aspects of the
planning and execution of the project are discussed by Rumsey [16],
along with details about the CFD and experimental teams.
To date,most CFDefforts on theNASAJuncture FlowExperiment

have been conducted usingRANSor hybrid-RANS solvers. Lee et al.
[17] performed the first CFD analysis to aid theNASA Juncture Flow
committee in selecting the wing configuration for the final experi-
ment. Lee et al. [18] presented a preliminary CFD study of the near
wing-body juncture region to evaluate the best practices in simulating
wind-tunnel effects. Rumsey et al. [7] used NASA’s FUN3D [19–21]
to investigate the ability of RANS-based CFD solvers to predict
the flow details leading up to separation. The study comprised differ-
ent RANS turbulence models such as a linear eddy viscosity one-
equation model, a nonlinear version of the same model, and a full
second-moment seven-equation model. Rumsey et al. [7] also per-
formed a grid sensitivity analysis and CFD uncertainty quantifica-
tion. Comparisons between CFD simulations and the wind-tunnel
experimental results have been recently documented by Lee and
Pulliam [22].
WMLES of the NASA Juncture Flow has been less thoroughly

investigated, despite NASA’s recognition of WMLES as a critical
pacing item for “developing a visionary CFD capability required by
the notional year 2030” [6]. According toNASA’s recent CFDVision
2030 report [6], hybrid RANS/LES [23,24] and WMLES [25] are
identified as the most viable approaches for predicting realistic flows
at high Reynolds numbers in external aerodynamics. Previous

attempts of WMLES of the NASA Juncture Flow include the works
by Iyer and Malik [26], Ghate et al. [27], and Lozano-Durán et al.
[28,29]. These studies highlighted the capabilities of WMLES to
predict wall pressure, velocity, and Reynolds stresses, especially
compared with RANS-based methodologies. Nonetheless, it was
noted that WMLES is still far from providing the robustness and
stringent accuracy required for CBA, especially in the separated
regions and wing-fuselage juncture.
The goal of this study is to systematically quantify the errors in the

mean quantities of interest in the NASA Juncture Flow using
WMLES. Several strategies have been proposed to model the near-
wall region in WMLES, and comprehensive reviews can be found in
Piomelli and Balaras [30], Cabot and Moin [31], Spalart [24], Lars-
son et al. [32], and the most recent review by Bose and Park [25]. We
follow the wall-flux modeling approach (or approximate boundary
conditions modeling), where the no-slip and thermal wall boundary
conditions are replacedwith stress and heat-flux boundary conditions
providedby thewallmodel. This category ofwallmodel uses theLES
solution at a given location in the LES domain as input and returns the
wall fluxes needed by the LES solver. Examples of the most popular
andwell-known approaches are those computing thewall stress using
either the law of the wall [33–35] or the full/simplified RANS
equations [36–44]. We will not attempt here to devise improvements
that alleviate current modeling limitations. The interested reader may
refer to Lozano-Durán and Bae [45] for new modeling venues in
WMLES applied to the NASA Juncture Flow.
This work is organized as follows. The flow setup, mathematical

modeling, and numerical approach are presented in Sec. II. The
strategies for grid generation are discussed in Sec. III along with
the computational cost of WMLES. In Sec. IV, we introduce the
theoretical analysis for the error scaling. WMLES of the NASA
Juncture Flow is presented in Sec. V, which includes predictions
for mean velocity profiles and Reynolds stresses for three different
locations on the aircraft: the upstream region of the fuselage, the
wing-body juncture, and the wing-body juncture close to the trailing
edge. We also discuss the prediction of the mean surface pressure
coefficient at different spanwise locations over the wing. Finally,
conclusions are offered in Sec. VI.

II. Numerical Methods

A. Flow Conditions and Computational Setup

We use the NASA Juncture Flow geometry with a wing based on
the DLR-F6 and a leading-edge horn to mitigate the effect of the
horseshoe vortex over thewing-fuselage juncture (Fig. 1). Themodel

Fig. 1 Experimental setup of the NASA Juncture Flow at NASA Langley 14- by 22-foot subsonic wind tunnel.
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wingspan is nominally 3397.2 mm, the fuselage length is 4839.2 mm,
and the crank chord (chord length at the Yehudi break) is L �
557.1 mm. The frame of reference is such that the fuselage nose is
located at x � 0, the x axis is alignedwith the fuselage centerline, the y
axis denotes the spanwise direction, and the z axis is the vertical
direction (away from the fuselage upstream of the wing). The asso-
ciated instantaneous velocities are denoted by u, v, and w, and occa-
sionally by u1, u2, and u3. The wing leading-edge horn meets the
fuselage at x � 1925 mm, and the wing root trailing edge is located
at x � 2961.9 mm.
In the experiment, the model was tripped near the front of the

fuselage and on the upper and lower surfaces of both wings. In our
case, preliminary calculations showed that tripping was also neces-
sary to trigger the transition to turbulence over the wing. Hence, the
geometry of the wing was modified by displacing in the z direction a
line of surface mesh points close to the leading edge by 1 mm along
the suction side of the wing, and by -1 mm along the pressure side.
The tripping lines follow approximately the location of the tripping
dots used in the experimental setup for the left wing [lower surface
x � �4144 − y�∕2.082; upper surface x � �3775 − y�∕1.975 for y <
−362 and x � �2847 − y�∕1.532 for y > −362]. Tripping using dots
mimicking the experimental setup was also tested. It was found that
the results over the wing-body juncture show little sensitivity to the
tripping due to the presence of the incoming boundary layer from the
fuselage. No tripping was needed on the fuselage, which naturally
transitioned from laminar to turbulence.
In the wind tunnel, the model was mounted on a sting aligned with

the fuselage axis. The sting was attached to a mast that emerged from
the wind-tunnel floor. Here, all calculations are performed in free air
conditions, and the sting and mast are ignored. The computational
setup is such that the dimensions of the domain are about five times the
length of the fuselage in the three directions (Fig. 2). The Reynolds
number is Re � LU∞∕ν � 2.4 × 106 million based on the crank
chord length L, freestream velocity U∞, and the kinematic viscosity
ν. The freestreamMach number isM � 0.189, the freestream temper-
ature is T � 288.84 K, and the dynamic pressure is 2476 Pa. We
impose a uniform plug flow as inflow boundary condition in the front
and bottom boundaries of the domain. The Navier–Stokes character-
istic boundary condition (BC) for subsonic nonreflecting outflow is

imposed at the outflow and top boundaries [46] and free-slip is used at
the lateral boundaries. At the aircraft wall, we impose Neumann
boundary condition with the shear stress provided by the wall model
as described in Sec. II.B.

B. Numerical Methods, Subgrid-Scale Model and Wall Model

The simulations are conducted with the high-fidelity solver
charLES developed byCascade Technologies, Inc. [47,48]. The code
integrates the compressible LES equations using a kinetic-energy-
conserving, second-order accurate, finite volume method. The
numerical discretization relies on a flux formulationwhich is approx-
imately entropy preserving in the inviscid limit, thereby limiting the
amount of numerical dissipation added into the calculation. The time
integration is performed with a third-order Runge–Kutta explicit
method. The subgrid-scale (SGS)model is the dynamic Smagorinsky
model [49] with the modification by Lilly [50].
We use a wall model to overcome the restrictive grid-resolution

requirements imposed by the small-scale motions in the vicinity of
thewalls. The no-slip boundary condition at thewalls is replaced by a
wall-stress boundary condition. Thewalls are assumed adiabatic, and
the wall stress is obtained by an algebraic equilibrium wall model
derived from the integration of the one-dimensional stress model
along the wall-normal direction [33,35]:

u�jj �y�⊥ � �

8><
>:
y�⊥ � a1�y�⊥ �2 for y�⊥ < 23;

1

κ
ln y�⊥ � B otherwise

(1)

where ujj is the model wall-parallel velocity, y⊥ is the wall-normal
direction to the aircraft surface, κ � 0.41 is the Kármán constant,
B � 5.2 is the intercept constant, and a1 is computed to ensure C1

continuity. The superscript� denotes inner units defined in terms of
wall friction velocity uτ and ν. The matching location for the wall
model is the first off-wall cell center of the LES grid, denoted by hw,
at which ujj equals the wall-parallel velocity of the LES solution. No
temporal filtering or other treatments were used for the LES velocity
at the matching location.

Fig. 2 Computational domain and NASA Juncture Flow model.
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III. Grid Strategies and Computational Cost

A. Grid Generation: Constant-Size Grid vs Boundary-Layer-Con-
forming Grid

The mesh generation is based on a Voronoi hexagonal close-
packed point-seeding method. We examine two strategies to distrib-
ute the cell centroids of the control volumes as illustrated in Fig. 3:
1) In the first approach, the constant-size grid, we set the grid size

in the vicinity of the aircraft surface to be roughly constant and
isotropicΔ ≈ Δx ≈ Δy ≈ Δz, whereΔx,Δy, andΔz are the character-
istic grid sizes in x, y, and z directions, respectively. Starting from the
wall and building up the grid, the number of cell layers with sizeΔ is
specified to be five.We set the far-field grid resolution,Δfar ≫ Δ, and
create additional layers with varying grid size to blend the near-wall
grid with the far-field grid. The meshes are constructed using a
Voronoi diagram and ten iterations of Lloyd’s algorithm to smooth
the transition between layers with different grid resolutions. The
concept is illustrated in Fig. 3a for a flat plate, while Fig. 4a shows
the actual grid structure in the NASA Juncture Flow for Δ � 2 mm
and Δfar � 200 mm. This grid-generation approach is algorithmi-
cally simple and efficient. However, it is agnostic to details of the
actual flow such as wake/shear regions and boundary-layer growth.
This implies that flow regions close to the fuselage nose and wing
leading edge are underresolved (less than one point per boundary-
layer thickness), whereas thewing trailing edge and the downstream-
fuselage regions are seeded with up to hundreds of points per
boundary-layer thickness. Gridding strategy 2 aims at providing a
more equitable distribution of grid points.
2) In the second gridding strategy, the boundary-layer-conforming

grid, we account for the actual growth of the turbulent boundary
layers, denoted by δ, by seeding the control volumes consistently
with its growth. We refer to this approach as boundary-layer-
conforming grid (BL-conforming grid). The method necessitates two
parameters. The first one is the number of points per boundary-layer
thickness Nbl such that Δx ≈ Δy ≈ Δz ≈ Δ ≈ δ∕Nbl is a function of
space. The secondparameter is less often discussed in the literature and
is the minimum local Reynolds number that we are willing to margin-
ally resolve in the flow,Remin

Δ ≡ ΔminU∞∕ν, whereΔmin is the smallest
grid resolution permitted. This is a necessary constraint as δ → 0 at the
leading edge of the body, which would impose a large burden on the
number of points required to cover this region. Hence, the grid reso-
lution is kept constant and equal to Δmin at those regions where the
boundary-layer thickness is below δmin � NblΔmin (see Fig. 3). We
also impose a geometric constraint on the grid size such thatΔmust be
smaller than the local radius of curvature R of the surface. The grid is
then constructed by seeding points within the boundary layer with
space-varying grid size

Δ�x; y; z� ≈ min

�
max

�
γδ

Nbl

;
Remin

Δ ν

U∞

�
; βR

�
(2)

where γ � 1.2 is a correction factor for δ to ensure that the near-wall
grid contains the instantaneous boundary layer, and β � 1∕2. Note

that the grid is still locally isotropic and the characteristic size of the
control volumes isΔ ≈ δ∕Nbl in the three spatial directions. Figure 4b
shows the structure of a BL-conforming grid in the NASA Juncture
Flow with Nbl � 5 and Remin

Δ � 2.8 × 103. Additional control vol-
umes of increasing size are created to blend the near-wall grid with the
far-field grid of size Δfar � 200 mm.
The second gridding approach requires an estimation of the boun-

dary-layer thickness at each location of the aircraft surface.Given that
boundary layers originate from viscous effects, the method proposed
here is based onmeasuring the deviation of the viscous solution from
a reference inviscid flow. This is achieved by conducting two simu-
lations: one WMLES, whose velocity is denoted as u, and one
inviscid simulation (no SGS model and free-slip at the wall), with
velocity denoted by uI. The grid generation for the two simulations
follows strategy 1 with Δ � 2 mm. Boundary layers at the leading
edge with thickness below 2 mm are estimated by extrapolating the
solution using a power law. Two examples of mean velocity profiles
for u and uI are shown in Figs. 5a and 5b. The three-dimensional
surface representing the boundary-layer edge Sbl is identified as the
loci of

Sbl ≡
�
�x; y; z�: khuI�x; y; z�i − hu�x; y; z�ik

khuI�x; y; z�ik
� 0.01

�
(3)

where h⋅i denotes time-average. Finally, at each point of the aircraft
surface (xa, ya, and za), the boundary-layer thickness δ is defined
as the minimum spherical distance between xa � �xa; ya; za� and
x � �x; y; z� ∈ Sbl:

δ�xa�≡
��xa − x

��
min

; ∀ x ∈ Sbl (4)

The boundary-layer thickness for the NASA Juncture Flow at
Re � 2.4 M and AOA � 5 is shown in Fig. 5c. The values of δ
range from ∼0 mm at the leading edge of the wing to∼30 mm at the
trailing edge of the wing. Thicker boundary layers above 50 mm are
found in the downstream region of the fuselage. Equation (3) might
be interpreted as the definition of a turbulent/nonturbulent interface,
although it also applies to laminar regions. Other approaches for
defining Sbl, such as isosurfaces of Q-criterion, were also explored
and combined with Eq. (4) to obtained a boundary-layer interface.
The results were similar to the ones reported in Fig. 5c, probably
because the present flow is dominated by attached boundary layers
with very mild separations. In these cases, Eq. (3) stands as a
reasonable indicator of the regions influenced by viscous effects
for the purpose of generating BL-conforming grids. It is worth
mentioning that other methods for estimating δ are available in the
literature (e.g. [51–56]). They feature varying degrees of complexity
and generalizability and also may offer a sensible estimation of δ
when properly conditioned to complex geometries.

B. Required Number of Grid Points and Time Steps

We estimate the number of grid points (or control volumes) to
conduct WMLES of the NASA Juncture Flow as a function of the
Reynolds number Re, the number of points per boundary-layer
thickness Nbl, and the minimum grid Reynolds number Remin

Δ . We
assume gridding strategy 2 and use the NASA Juncture Flow geom-
etry. The boundary-layer thickness was obtained following the pro-
cedure in Sec. III.A. The total number of points Npoints to grid the
boundary layer spanning the surface area of the aircraft Sa is

Npoints �
Z

δ

0

ZZ
Sa

1

Δ�xjj; zjj�3
dxjjdzjjdy⊥ �

ZZ
Sa

Nbl

Δ�xk; zk�2
dxjjdzjj

(5)

where xk and zk are the local aircraftwall-parallel directions, and y⊥ is
the local wall-normal direction. Equation (5) only accounts for the
points within the boundary layer and neglects the points in the far
field and the transition grid in between. However, the latter are
usually smaller than the number of points in the vicinity of the aircraft

b)

a)

Fig. 3 Schematic of a) constant-size grid and b) BL-conforming grid for
a ZPGTBL.

4 Article in Advance / LOZANO-DURÁN, BOSE, AND MOIN

D
ow

nl
oa

de
d 

by
 2

3.
30

.1
64

.2
06

 o
n 

N
ov

em
be

r 
15

, 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

06
10

41
 



wall. Note that all the cost estimates of WMLES are predicated upon
Eq. (5) with BL-conforming grids (see [23,57–59]); yet, to the best of
our knowledge, WMLES of an aircraft geometry has never been
conducted using a true BL-conforming grid until the present work.
Equation (5) is integrated numerically, and the results are shown in
Fig. 6. The cost map in Fig. 6a contains log10�Npoints� as a function of
Nbl and Remin

Δ . The accuracy of the solution is expected to improve
for increasing values of Nbl (i.e., higher energy content resolved by
the LESgrid) and decreasewith increasingRemin

Δ (i.e., worse leading-
edge resolution). Remin

Δ can also be understood as the largest subgrid
boundary layer that can be resolved by the LES grid usingNbl points.
Figure 6b provides an illustration of the subgrid-boundary-layer
region forRemin

Δ < 104, which is confined to a small region (less than
10% of the chord) at the leading edge of the wing.
The scaling properties of Eq. (5) can be unfolded by considering a

wall-attached, zero-pressure gradient flat-plate turbulent boundary

layer (ZPGTBL)with δ ∼ �x − xe���x − xe�U∞∕ν�−m, where xe is the
streamwise distance to the leading edge and m ≈ −1∕7 [60]. If we
further assume that Re ≫ Remin

Δ , the number of control volumes can
be shown to scale as

Npoints ∼ N
13∕6
bl Re�Remin

Δ �−5∕6 (6)

which is also included in Figs. 6c and 6d for reference. Equation (6) is
the generalization of the WMLES cost scaling from previous works
[23,57–59] that explicitly accounts for Nbl and Remin

Δ (see Appen-
dix A for the derivation). Additionally, the number of time steps to
integrate the equations of motion for a time T is

Nsteps � T∕Δt ∼ TU∞∕Δmin � ~TRe�Remin
Δ �−1 (7)

Fig. 4 Visualization of Voronoi control volumes for (top) constant-size grid following strategy 1 with Δ � 2 mm and Δfar � 200 mm and (bottom)

boundary-layer-conforming grid following strategy 2 withNbl � 5 and Remin
Δ � 2.8 × 103.
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where Δt is the time step and ~T � TU∞∕L is the flow-through time
with respect to the crank chord, and we have assumed that the simu-
lation is constrained by the convective time-step Δt ∼ Δmin∕U∞.
Equation (7) shows that both Re and Remin

Δ (i.e., leading-edge reso-
lution) are key contributors to the time-integration cost of WMLES.
The total space-time computational cost is given by Nc �
C�Npoints ⋅ Nsteps�, whereC is amachine/code-dependent function that
converts Npoints ⋅ Nsteps to core-hours.
TheReynolds number considered in Fig. 6 isRe � 5 × 106, which

is representative of wind-tunnel experiments. For an actual aircraft in
flight conditions, the typical Reynolds number is Re ≈ 5 × 107, that
would increaseNpoints by roughly a factor of ten due to the thinning of
the boundary layers as seen in Eq. (6). More notably, Eq. (6) shows
that the cost of WMLES with Nbl scales roughly as N

13∕6
bl ≈ N2

bl,
which becomes very computationally demanding even for moderate
values of Nbl. The dependence of Npoints on Remin

Δ is milder, but
values of Remin

Δ < 103 become rapidly unattainable. This reiterates
the critical importance of establishing the range of admissibleNbl and
Remin

Δ to achieve the desired accuracy for a given quantity of interest.
Additionally, different quantities of interest might not need to share
the same grid requirements. For example, ifNbl ≈ 5 andRemin

Δ ≈ 104

suffice to attain the desired accuracy in the quantities of interest at
Re � 5 × 106, then the required number of points is O�10� million,
which can be currently simulated in hours usingO�1000�CPU cores.
However, if the desired accuracy for the quantities of interest is such
thatNbl ≈ 20 andRemin

Δ ≈ 103, the number of grid points increases up
to O�1000� million, which renders WMLES unfeasible as a routine
tool in industry. Hence, the key to the success ofWMLES as a design
tool resides in the accuracy of the solution achieved as a function of
Nbl andRemin

Δ . This calls for a systematic error characterization of the
quantities of interest, which is the objective of the following sections.

IV. Error Scaling of WMLES

A. Error Definition

The purpose of this section is to establish the expectations of the
error scaling of WMLES in zero-pressure gradient turbulent boun-
dary layer. This error will serve as the baseline to determine whether
WMLES is over- or underperforming in the NASA Juncture Flow
calculations. The analysis is motivated by the fact that the solutions
fromWMLES are intrinsically grid-dependent, that is, the grid size is
an explicit variable of the governing equations. As such, WMLES
should be framed as a convergence study and multiple computations
are required in order to faithfully assess the quality of the results. This
raises the fundamental question of what is the expected WMLES
error as a function of the flow parameters and grid resolution. To
tackle this problem, we follow the error-scaling methodology from
[61]. Taking the experimental values qexp as ground truth, the relative
error in a quantity of interest hqi is defined as

εq ≡
khqexpi − hqikn

khqexpikn
� f

�
Δ
δ
; Re;Ma; geometry; : : :

�
(8)

where k ⋅ kn is the L2-norm over the vector components and spatial
coordinates of hqi, and f is the error function that in general depends
on the nondimensional parameters of the problem and the geometry.
For a given geometry and flow regime, the error function in Eq. (8) in
conjunction with the cost map in Fig. 6a determines whether
WMLES is a viable approach in terms of accuracy of the quantity
of interest and computational resources available. For the case of
NASA Juncture Flow considered here, the geometry, Reynolds num-
ber, and Mach number are set parameters. If we further assume that
the error of a quantity hqi follows a power law (i.e., functional
invariance under grid-size rescaling), Eq. (8) can be simplified as
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Fig. 5 Panels a) and b) are the mean velocity profiles for hui (lines with symbols) and huIi (dotted lines), and boundary-layer height (dashed). The
locations of themean profiles are indicated in panel c by the solid line for panel a and the cross for panel b. c) Boundary-layer thickness (inmillimeters) for

the NASA Juncture Flow at AOA = 5 deg and Re � 2.4 × 106.
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εq � βq

�
Δ
δ

�
αq

(9)

where βq and αq are the error constant of proportionality and error
convergence rate, respectively, that depend on themodeling approach
(SGS model, wall model, numerical scheme, etc.) and flow regime
(i.e., laminar flow, fully turbulent flow, separated flow, etc.).
We focus on the error scaling of the surface pressure coefficient εp

and mean velocity profile in outer units εu. It is certain that, from an
engineering viewpoint, the lift and drag coefficients are the most
pressing quantities of interest in aerodynamic applications. However,
both are integrated quantities susceptible to error cancellation. They
also lack information about the spatial structure of the flow, which
makes more challenging the detection of modeling errors. On the
other hand, the granularity provided by pointwise time-averaged
quantities, such as the mean pressure and velocity, greatly facilitates
the identification ofmodeling deficiencies.Hence, wewill exploit the
errors in pressure coefficient and mean velocity profile as a proxy to
measure the quality of the WMLES solution.

B. Reference Error Scaling for Mean Velocity Profile and Pressure
Coefficient

To aid the interpretation of the results, it is informative to derive
theoretical estimations for the error scaling of the pressure coeffi-
cient, the mean velocity profile, and the wall stress in simplified flow
scenarios. For wall-attached flows, errors inCp can be assumed to be
dominated by inviscid effects. Under the thin boundary-layer
approximation, the wall-normal-integrated spanwise mean momen-

tum equation yields �p� ρv2 ≈ pI ⇒ pwall � pI , where pI is the

inviscid far-field pressure and ��⋅� is the average in the spanwise
direction and time. Thus, the pressure at the surface is mostly con-
trolled by the inviscid imprint of the outer flow, and we can expect

εp � βp

�
Δ
δ

�
αp
Re0;with βp ≪ 1;αq ≈ 0 (10)

Equation (10) implies that errors inCp should be small even when
the boundary layer is marginally resolved (i.e., Δ ≈ δ) and should
exhibit a weak dependence on the grid resolution.
The error scaling of the mean velocity profile can be estimated by

assuming WMLES of a turbulent channel flow in which the kinetic
energy spectrum follows Ek ∼ 1∕Δa and the velocity gradients scale
as ∂ui∕∂xj ∼

						
Ek

p
∕Δ [61]. The exponent a depends on the regime

the SGS models operates in: a � −1 for the shear-dominated range
[62,63] and a � −5∕3 for the inertial range [64]. Taking into account
the scaling as described, the expected error of the mean velocity
profile is

εu � βu

�
Δ
δ

�
αu
Re0;with αu � 0 or αu � 1 (11)

whereαu � 0 forΔ∕δ lying on the shear-dominated region, andαu �
1 for Δ∕δ within the inertial range [61]. The constant βu depends on
the SGS model, numerical schemes, and error propagation from the
upstream flow. In the case of turbulent channel flow (no upstream
error propagation), βu is bounded by the error of the inviscid solution
such that βu < O�10−1� as discussed subsequently. The results from
Eq. (11) also indicate that no improvement in the error is expected for
grid resolutions comparable to the scales in the shear-dominated
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Fig. 6 a) Logarithmof the number of points log10 Npoints required forWMLESof theNASAJuncture Flow geometry as a function of the number of grid

points per boundary-layer thickness Nbl and minimum grid Reynolds number Remin
Δ for Re � 5 × 106; b) subgrid boundary-layer region (in red) for

Remin
Δ � 104 at Re � 5 × 106; c–d) number of grid points as a function of 6c Nbl and 6d Remin

Δ . Dashed lines in panels c–d represent the power laws in

Eq. (6).
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region, whereas an approximately linear scaling can be anticipated
for finer gridswith sizes comparable to the scales in the inertial range.
The conclusion is consistent with the phenomenological argument
that capturing the energy injectionmechanism from themean shear is
critical to achieve accurate LES results.
The error scaling from Eq. (11) is validated for WMLES of

turbulent channel flows at Reτ � 4200. The channels are driven by
setting the centerline velocityUc to a constant value akin toU∞ in a
turbulent boundary layer. The calculations are conducted with
charLES using dynamic Smagorinsky model and the equilibrium
wall model. We consider isotropic Voronoi grids with characteristic
sizes of Δ∕δ � 1∕3, 1/5, and 1/10, which are representative of the
grid resolutions currently affordable for WMLES of the NASA
Juncture Flow Experiment. Figure 7a shows the mean velocity
profiles for the three grid resolutions and offers a visual reference
of the convergence of the mean velocity to the direct numerical
simulation (DNS) solution from Lozano-Durán and Jiménez [65].
The theoretical error scaling from Eq. (11) is tested in Fig. 7b. The
figure also compares the errors from charLES (squares) with those
obtained using a different numerical scheme and grid strategy,
namely, finite differences with staggered grids (triangles) from Loz-
ano-Durán andBae [61] (seeAppendixB). The results show that εu ∼
�Δ∕δ� stands as a sensible approximation of the error for the two
solvers considered, providing confidence in the theoretical argu-
ments involved in the derivation of Eq. (11). A useful approximation
of the error in charLES is εu ≈ 0.08�Δ∕δ�, whichwill be used later for
comparison purposes with the NASA Juncture Flow. As a reference,
Fig. 7b also includes the largest error expected in a turbulent channel
flow (dotted line) defined as the difference between themeanvelocity
from DNS and the inviscid solution, which gives an error of about
∼15%. Thus, even a low-performance WMLES is bounded by a
maximum error of ∼15% in canonical ZPGTBL (and channel flows)
due to the constraint imposed by the freestream. Note that the
reference inviscid error might be larger in more complex geometries.
Although not shown in Fig. 7b, the linear convergence predicted

from Eq. (11) breaks down for Δ ≈ 0.03–0.05δ due to the interplay
between the numerical errors and the SGSmodel [61]. This anomaly
does not manifest in our NASA Juncture Flow calculations because
of the choice of grid resolutions and will not be discussed here except
for the comments in Appendix B. Nonetheless, this behavior is
responsible for the nonmonotonic convergence of εu with Δ, which
is an outstanding problem of WMLES. Both charLES and the finite-
difference solver suffer from this nonmonotonic behavior, and the
reader is referred to Appendix B for more details.
The last important consideration is that Eq. (11) ismeant to bevalid

for wall turbulence over approximately flat surfaces. In the case of
flows in the vicinity of corners, corrections are required to account for
the errors due to the proximity of lateral walls. Lozano-Durán and
Bae [61] introduced a generalized version of Eq. (11) and showed that
WMLES errors in the mean velocity profile at a given wall-normal
distance d are roughly controlled by the local shear length-scale,
εu ∼ Δ∕Ls, where Ls ≈ uτ∕S and S is the mean shear at d. Under the

assumption that S ∼ uτ∕d (akin to the log layer), the error follows
εu ∼ Δ∕d. If we further assume that the error close to a corner is
dominated by the influence of the closest wall (located at a distance
dmin), we can define the compensated error as εudmin∕δ. The latter
error will be instrumental to assessing the accuracy of WMLES in
corner regions with respect to the reference error in turbulent chan-
nel flows.

C. Wall-Modeling Errors

We analyze the error propagation between the mean velocity
profile and the wall-stress predictions by the equilibrium wall model
in Eq. (1). To that end, we express the quantity q in terms of its exact
value �q and its relative error εq as q � �q�1� εq�. Assuming that the
matching location between LES and the wall model hw lies in the log
layer, the error in the LES wall-parallel velocity ujj at the matching
location is given by

εujj �
1� εuτ
1� εκ

�
1� ln�1� εuτ � � �κ �B�εκ � εB � εκεB�

�B �ϕ

�
− 1

(12)

where �ϕ � 1∕�κ ln�Rehw� � �B is the model reference solution,
Rehw � �uτhw∕ν is the Reynolds number based on the matching
location, and εκ and εB are the relative errors in the model constants
κ and B, respectively. Two sources of errors can be identified in
Eq. (12): errors from the LES mean velocity εujj, referred to as
external wall-modeling errors, and errors from the model parameters
εκ and εB, referred to as internal wall-modeling errors. In the former,
errors in the LES mean velocity profile at the matching location
propagate to the value of uτ predicted by the wall model. It can be
shown that this error is roughly linear, εuτ ∝ εujj . This is seen in
Fig. 8a, which features the error in ujj as a function of the error in uτ
evaluated from Eq. (12) for different values of εκ and εB. Figure 8a
also includes the actual errors (circles) for WMLES of a turbulent
channel flow using charLES with Δ∕δ � 1∕3, 1/5, and 1∕10, which
follows the linear trend anticipated from our analysis. Note that this
error can be labeled as external to the wall model inasmuch as it is
present even if thewall model provides an exact representation of the
near-wall region (i.e., εκ � εB � 0). Although not shown, the sensi-
tivity of εuτ to Rehw is weak and scales as εujj ∼ ln�Rehw�.
The second source of errors represents the internal wall-model

limitations: even with a perfect prediction of ujj (namely, εujj � 0),
the wall model might incur errors due to 1) uncertainties in the
parameters κ and B embedded into the model, 2) deviations of the
actual flow from these parameters (e.g., pressure gradient effects or
roughness changing κ andB), and/or 3) the fact that the log-layer law
is no longer representative of the mean velocity profile (e.g., as in
separated flows). A consequence of internal errors is that WMLES
might not converge to the DNS solutionwith grid refinements untilΔ
is in the DNS-like regime and the contribution of the wall model is

a)
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Fig. 7 a)Mean velocity profile forWMLESwith charLES of a turbulent channel flow. Colors denote grid resolutionsΔ∕δ � 1∕3, 1/5, and 1∕10; b) error
in themeanvelocity profile εu as a function of the grid resolutionΔ forWMLESof turbulent channel flow. Symbols denote simulationsusing charLESwith
Voronoi grids□ and finite-difference solver with staggered grids ▵. Dashed line is εu ∼ Δ∕δ; horizontal dotted line is the error from the inviscid solution.
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negligible. Figure 8b quantifies the internal errors in the mean
velocity profile as a function of εκ (solid lines) and εB (dashed lines).
Overall, wall models are more resilient to internal errors than to
external errors. For example, purely internal errors of εκ � 10%
and εB � 10% yield εuτ ≈ 6% and εuτ ≈ 3%, respectively, both of
them lower than the sole external error εuτ ≈ εujj � 10%. Another
interesting observation fromFig. 8a is that certain combinations of εκ ,
εB, and εujj are subject to error cancellation, resulting in a fortuitous
good prediction of uτ. Note that the expression in Eq. (12) might be
used even when the near-wall flow does not comply with the log-
layer law; however, in that case εκ and εB become arbitrarily large and
Eq. (12) ceases to be informative of the error scaling.
In summary, external errors will propagate linearly to the mean

velocity profile, increasing βuwithout affectingαu appreciably,while
internal errors will bound the maximum possible accuracy of the
WMLES solution. Both sources of error, external and internal, will
impact the predictions of the NASA Juncture Flow.

V. WMLES of the NASA Juncture Flow Experiment

A. WMLES Cases and Uncertainties

We performWMLES of the NASA Juncture Flow with a leading-
edge horn at Re � 2.4 × 106 and AOA � 5 deg. Eight cases are
considered. In the first six cases, we employ grids generated using
strategy 1 with constant grid size in millimeters, similar to the
example offered in Fig. 4a. In this case, the direct impact of Remin

Δ
can be absorbed into Δ∕δ as argued for Eq. (9). The grid sizes
considered are Δ ≈ 6.7; 4.3; 2.2; 1.1, and 0.5 mm, which are labeled

as C-D7, C-D4, C-D2, C-D1, and C-D0.5, respectively. Cases C-D7,
C-D4, and C-D2 are obtained by refining the grid across the entire
aircraft surface. For cases C-D1 and C-D0.5, the grid size is 1.1
and 0.5 mm, respectively, only within a box along the fuselage
and wing-body juncture defined by x ∈ �1770; 2970� mm, y ∈
�−300;−200� mm, and z ∈ �−50; 150� mm. The purpose of C-D1
and C-D0.5 is to further examine the convergence of the solution in
the separated region, where we will show the performance of
WMLES is the poorest. The refinement box was chosen to make
the cases computationally tractable. The computational costNc of the
simulations was 31 × 103, 40 × 103, 75 × 103, 116 × 103, and 398 ×
103 core-hours for C-D7, C-D4, C-D2, C-D1, and C-D0.5, respec-
tively, using Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60 GHz (in the
NASA advanced supercomputing facility Pleiades). The total num-
ber of control volumes is 14, 17, 31, 50, and 174 million for C-D7,
C-D4, C-D2, C-D1, and C-D0.5, respectively. Nonetheless, one
should be cautious in appraising the number of control volumes as
an indicator of the accuracy of the solution as discussed in Sec.V.C.A
more sensible characterization of the grid resolution is given by the
resolution map: distribution of points per boundary-layer thickness
(δ∕Δ) over the aircraft surface. Figure 9a features the resolution map
for case C-D4 and exposes the strong inhomogeneity in δ∕Δ typical
of constant-size grids.
Three additional cases are considered to assess the impact of BL-

conforming grids on the accuracy of the predictions. The grids are
generated using strategy 2 for Nbl � δ∕Δ � 5 and Remin

Δ � 2.8 ×
103 (denoted as case C-N5-R2e3); Nbl � δ∕Δ � 10 and Remin

Δ �
2.8 × 103 (C-N10-R2e3); and Nbl � δ∕Δ � 5 and Remin

Δ � 5.6 ×

a) b)

Fig. 9 Resolutionmap: points per boundary-layer thickness δ∕Δ for: a) constant-size grid for caseC-D2 and b) BL-conforming grid for caseC-N5-R2e3.
Color map is clipped at δ∕Δ � 5 to facilitate the comparison between panels a and b, but note that white areas might enclose regions with δ∕Δ > 5.
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Fig. 8 Error propagation between LES andwall model fromEq. (12): a) error in the LESwall-parallel velocity ujj at thematching location as a function
of the error in thewall-stress predicted by the equilibriumwall. Solid lines represent εκ � εB � −10%,−7.5%,−3.5%,−1%, 1%, 3.5%, 7.5%, 10% from
black to red and Rehw

� 1000. Circles are actual errors measured by WMLES of turbulent channel flows with charLES for Δ∕δ � 1∕3;1∕6, and 1/10;

b) error in the LESwall-parallel velocity ujj at thematching location as a function of the error in the model parameters κ (solid lines) andB (dashed lines)

for different values of matching location Reynolds number Rehw
� 100, 300, 1000, 3000, and 10,000 from black to red/blue.
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103 (C-N5-R5e3). The first two cases are intended to provide
information about the effect of Nbl on the accuracy of the results,
whereas the third case is used to evaluate the impact of the leading-edge
resolution. The grid Reynolds numbers considered set the minimum
allowed grid resolution to Δmin ≈ 0.6 mm, Δmin ≈ 0.3 mm, and
Δmin ≈ 1.3 mm for cases C-N5-R2e3, C-N10-R2e3, and C-N5-
R5e3, respectively. A cross section of the BL-conforming grid for
C-N5-R2e3 is shown in Fig. 4b. The computational cost Nc of the
simulations was 27 × 103, 90 × 103, and 13 × 103 core-hours for
C-N5-R2e3, C-N10-R2e3, and C-N5-R5e3, respectively, using
Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60 GHz. The total number
of control volumes for C-N5-R2e3, C-N10-R2e3, and C-N5-R5e3 is
12, 40, and 6 million, respectively. Figure 9b shows the resolution
map for C-N5-R2e3. Compared to the constant-size grid counterpart
in Fig. 9a, BL-conforming grids display a homogeneous grid reso-
lution in terms of δ∕Δ except at the leading-edge region, where the
limitation imposed by Remin

Δ comes into effect. An instantaneous
visualization of the Q-criterion [66] for case C-N5-R2e3 is shown in
Fig. 10 to provide a general overview of turbulent flow around the
NASA Juncture Flow geometry.
In the following, hqi and �q� 0 denote the time-average and the

fluctuating component of q, respectively. For comparison purposes,
the profiles from WMLES are interpolated to the locations of
the experiments. Statistical uncertainties owing to limited samples
in WMLES quantities are estimated assuming uncorrelated and
randomly distributed errors following a normal distribution. The
uncertainty in hqi is then estimated as hqiu ≡ σ∕

						
Ns

p
, where Ns is

the number of samples in hqi and σ is the standard deviation of the
samples. The uncertainties were computed for all the quantities of
interest, but are only reported for the tangential Reynolds stresses.
The uncertainties for the mean velocity profiles and pressure coef-
ficient were found to be below 1% and are not included in the plots.

B. Mean Velocity Profiles with Constant-Size Grids

Three locations are considered to investigate the errors in themean
velocity profile: 1) the upstream region of the fuselage (x �
1168.40 mm, z � 0 mm), 2) the wing-body juncture (x �
2747.6 mm, y � 239.1 mm), and 3) the wing-body juncture with
separation close to the trailing edge (x � 2922.6 mm, y �
239.1 mm). Figure 11 portrays the three locations in the NASA
Juncture Flow using solid lines of different colors. Throughout the
manuscript, we often refer to the three regions simply as fuselage,
juncture, and separation/trailing-edge regions. We will assume that
the mean velocity fromWMLES is directly comparable to unfiltered
experimental data huexpi i, as it is often the case for quantities domi-
nated by large-scale motions [61,67]. The results for WMLES with
constant-size grids are presented next.

Themeanvelocity profiles at the fuselage, juncture, and trailing-edge
region are shown in panel a of Figs. 12–14, respectively. In the fuselage,
the mean velocity profiles approach the experimental results with grid
refinement.The turbulent boundary layer over the fuselage is about 10 to
20 mm thick, which yields roughly 3–6 points per boundary-layer
thickness for the grid resolutions considered. Themeanvelocity profiles
also get closer to the experimental profile in the juncture region and
trailing-edgezone, as seen inFigs. 13aand14a, but theydo soat a slower
pace. The accuracy of the predictions in the latter regions appears to be
inferior to those in the fuselage despite the fact that the local Nbl in the
juncture and trailing edge is roughly 30–80 points per δ, which is one
order of magnitude larger than Nbl in the fuselage.
Figure 15 is the cornerstone of the present study. It summarizes the

relative errors in theprediction of themeanvelocity profile as a function
of the local grid resolution. Figure 15 also follows the same color code
as Fig. 11 and features the reference error for a turbulent channel flow
(dotted line) introduced in Sec. IV. In the fuselage, the errors are
roughly 3–8% and scale as εu ≈ βu�Δ∕δ� (red symbols in Fig. 15a)
akin to the errors in a turbulent channel flow. This suggests that the
turbulent flow in the fuselage resembles aZPGTBL.As such,wall- and
SGSmodels devised for, and validated in, flat-plate turbulence perform
as anticipated by the error analysis in Sec. IV. The error constant in the
fuselage,βu ≈ 0.14, is larger than thevalue for turbulent channel flows,
βu ≈ 0.08 (see Sec. IV), and it will be shown in Sec. V.C that this is
caused by the propagation of errors from upstream of the fuselage.

Fig. 10 Visualization of the instantaneous isosurfaces of the Q-criterion colored by the velocity magnitude. Data for C-N10-R2e3.

Fig. 11 Three locations considered (solid lines) to investigate the error
in the mean velocity profile: red (fuselage), black (juncture), and blue
(separation).
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In contrast, the wing-body juncture and trailing-edge region
exhibit larger errors than those reported in the fuselage. In the
juncture region, the errors in the mean velocity are about 15% (black
symbols in Fig. 15a), whereas the errors in the trailing-edge zone are
about 100% (blue symbols in Fig. 15a). One of the reasons for the
larger errors in the juncture and trailing edge is that the mean profiles
are plotted along a line parallel and close to the fuselage (see black
and blue lines in Fig. 11). As argued in Sec. IV, thiswould amplify the
errors due to the additional shear from the fuselage boundary layer.
To account for enhanced errors in the proximity of a wall, Fig. 15b
shows the errors compensated by the closest distance to the fuselage
dmin∕δ. The compensated errors in the juncture region bear a closer

resemblance to the trends observed in the fuselage, implying that
most of the increase in error can be explained by the proximity of the
wall. Nonetheless, the convergence rate of the solution at the junc-
ture, αu ≈ 0.4, is still slower than the linear convergence expected
from the channel reference error from Sec. IV.B. The situation is less
favorable for the trailing-edge region: not only is the convergence rate
slower (αu ≈ 0.6), but its magnitude is still considerably larger (i.e.,
higher βu) even after error compensation. This suggests that the errors
in the separated region are not only the consequence of the proximity
to the fuselage but of something else. The additional errors and slower
convergence rate in the wing-body juncture and trailing edge may be
attributed to two causes. The first one might be the contamination of
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2

a) b)

Fig. 12 a)Mean velocity profiles and b) Reynolds shear stresses at location 1: upstream region of the fuselage x � 1168.4mmand z � 0mm (red line in
Fig. 11). Solid lines with symbols denote WMLES for cases C-D7 (□), C-D4 (▹), and C-D2 (°). Colors denote different velocity components. Panel b only
includes case C-D2, and the shaded area represents statistical uncertainty. Experiments are denoted by dashed lines. Distance y is normalized by local
boundary-layer thickness δ at that location.
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Fig. 13 a) Mean velocity profiles and b) Reynolds shear stresses at location 2: wing-body juncture at x � 2747.6 mm and y � 239.1 mm (black line in
Fig. 11). In panel a, lines with symbols are for cases C-D2 (°), C-D1 (◃), andC-D0.5 (⋄). Colors denote different velocity components. Panel b only includes
case C-D0.5, and the shaded area represents statistical uncertainty. Experiments are denoted by dashed lines. Distance z is normalized by local boundary-
layer thickness δ at that location.
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Fig. 14 a) Mean velocity profiles and b) Reynolds shear stresses at location 3: wing-body juncture close to the trailing edge at x � 2922.6 mm and
y � 239.1 mm (blue line in Fig. 11). In panel a, lines with symbols are for cases C-D2 (°), C-D1 (◃), andC-D0.5 (⋄). Panel b only includes case C-D0.5, and
the shaded area represents statistical uncertainty. Experiments are denoted by dashed lines. Distance z is normalized by local boundary-layer thickness δ
at that location.
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the solution from upstream errors. The second option is that the
presence of three-dimensional boundary layers and/or flow separa-
tion renders inaccurate the modeling assumptions predicated upon
the local similarity to a ZPGTBL [68]. The first source of error is
examined in more detail in the following section using BL-conform-
ing grids.
For completeness, we close this section by briefly discussing the

errors in the prediction of the tangential Reynolds shear stresses.
Panel b of Figs. 12–14 contains the resolved portion of the tangential
Reynolds shear stresses hu 0

i u
0
ji. The profiles of hu 0

i u
0
ji capture the

trends of the experimental data at the stations investigated, although
their magnitudes are underpredicted for the juncture region and
trailing edge. Lozano-Durán and Bae [61] showed that the values
of the SGS tensor τSGSij required to predict the correct mean velocity
profile usually imply the underestimation of hu 0

i u
0
ji. Assuming that

huexpi i ≈ huii, then hu 0exp
i u 0exp

j i ≈ hu 0
i u

0
ji � hτSGSij i. Thus, for the typ-

ical grid sizes in WMLES, we expect that jhu 0
i u

0
jij < jhu 0exp

i u 0exp
j ij,

that is, underprediction of the tangential Reynolds stress. Estimations
from Lozano-Durán and Bae [61] also showed that the error for the
turbulence intensities in WMLES grids should scale as ∼�Δ∕δ�2∕3
with values in the range of 10–30%, which is consistent with our
observations.

C. Mean Velocity Profiles with BL-Conforming Grids

We evaluate the benefits of using BL-conforming grids con-
structed following the procedure described in Sec. III.A. First, we
illustrate the improvements in the prediction of the mean velocity by
comparing the results for case C-D2 (Δ ≈ 2 mm) with case C-N5-
R2e3 (Nbl � 5 and Remin

Δ � 2.8 × 103). The mean velocity profiles

for both cases are shown in Fig. 16 at the three locations under
consideration. Moderate improvements are attained for C-N5-R2e3
at the fuselage, despite the fact C-N5-R2e3 and C-D2 share the same
Nbl at that location. The benefits enabled byBL-conforming grids are
accentuated at the juncture region and trailing edge, at which C-N5-
R2e3 outperforms C-D2 using only one-fourth the number of grid
points in each spatial direction (namely, a factor of 64 less points in
the local volume). For reference, case C-D2 has 31 million control
volumes, whereas case C-N5-R2e3 has 12 million control volumes.
The lower errors for case C-N5-R2e3 clearly demonstrate that the
sole use of the number of control volumes is a misleading metric to
quantify the quality of WMLES and that the spatial distribution of
control volumes may have an appreciable impact on the accuracy of
the solution.
The systematic characterization of errors in themean flow is shown

in Fig. 17a, which includes the errors for constant-size grid (open
symbols) and BL-conforming grids (closed symbols). The predic-
tions obtained with BL-conforming grids are consistently more
accurate than those for constant-size grids at the three locations
considered. The improvements in the fuselage region are the least
pronounced, which might be an indication that the errors saturate
roughly at 2%. This is consistent with the error analysis in Sec. IV,
where it was demonstrated that internal wall-modeling errors caused
by deviations of the actual flow from the law of the wall propagate to
themeanvelocity profile as dictated by Eq. (12). These internal errors
impose a lower limit to the minimum error achievable by WMLES.
For example, if the flow at the fuselage differs from aZPGTBLby 3%
(%εκ � 3), the minimum error attainable byWMLES at that location
would be 2%, which is consistent with our observations. Moreover,
additional grid refinements in the presence of internal errors are not
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Fig. 15 Errors in themeanvelocity profile (symbols) at the three locations shown inFig. 11 using the same color code: red (fuselage), black (juncture), and
blue (separation): a) error in the mean velocity profile predicted by WMLES as a function of grid resolution normalized with local boundary-layer
thickness and b) error in the mean velocity profile predicted by WMLES compensated by closest distance to fuselage dmin∕δ as a function of grid
resolution. Fuselage location is set at dmin � δ. The red dotted line in panels is the reference error for a turbulent channel flow εu � 0.08Δ∕δ.
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Fig. 16 Mean velocity profiles for case C-N5-R2e3 (solid lines with ⋅) and C-D2 (solid lines with °) at a) location 1: upstream region of the fuselage
x � 1168.4 mm and z � 0 mm, b) location 2 wing-body juncture x � 2747.6 mm and y � 239.1 mm, and c) location 3: wing-body juncture close to the
trailing edge at x � 2922.6 mm and y � 239.1 mm. Experiments are denoted by dashed lines. Colors denote different velocity components; distance y is
normalized by local boundary-layer thickness δ at that location. d) Error in mean velocity profile prediction byWMLES as a function of grid resolution.
Open symbols represent constant-size grids (as in Fig. 15a) and closed symbols represent BL-conforming grids. Different colors denote the three locations
as in Fig. 15b using the same color code.
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expected to improve the prediction of the mean velocity profile until
the LES grid resolution (and hw) reaches the wall-resolved-LES
regime, for which internal errors would vanish. For the juncture
and separation region, the most noticeable improvement with BL-
conforming grids is the reduction in the error constant βu, while the
convergence rate of the error αu remains unchanged. Thus, grids
designed to specifically target the boundary layer can improve the
overall accuracy of WMLES via a smaller value of βu.
The improved outcome forBL-conforming gridsmight be justified

by considering the upstream history of the WMLES solution at a
given station. For the sake of simplicity, let us considerWMLES of a
flat-plate turbulent boundary layer evolving along the x direction
using two grids such as those shown in Fig. 3: a constant-size grid and
a BL-conforming grid. Given an x location at which both grids share
the same Nbl, the upstream flow for the constant-size grid is under-
resolved compared to the BL-conforming grid due to the thinning of
δ. Consequently, constant-size grids display larger upstream errors
that eventually propagate downstream, contaminating the solution at
x. Even if at a given x location Nbl is larger for the constant-size grid
than for the BL-conforming grid, the solution for the former could
still exhibit poor accuracy because of the propagation of upstream
errors. Assuming that the lifetimes of the energy-containing eddies at
x0 < x are proportional to δ0∕uτ, and that these eddies are advected by
U∞, the spatial extent for the downstream propagation of errors Δxe
froma given location x0 can be estimated asΔxe ≈ ΓU∞δ0∕uτ, where
Γ is a flow-dependent constant. The distance Δxe is the streamwise
recovery length for the energy-containing eddies to forget their past
history, and hence their errors. In ZPGTBL at a high Reynolds
number, Δxe has been experimentally shown to reach values of
Δxe ≈ 300δ0 [69]. In our case, this implies that errors from the
underresolved leading edge (δ0 ≈ 1 mm) are advected downstream
for Δxe ≈ 300 mm, which is ∼50% of the crank chord. On the other
hand, the BL-conforming grids maintain a constant grid resolution
scaled in δ units and effectively a higher resolution of the
upstream flow.
One implication of the downstreampropagation of errors is that the

local grid resolutionΔ∕δ is inappropriate to characterize the errors in
constant-size grids. Instead, an effective upstream-averaged grid
resolution of the form Δ∕�δ should be used, where

�δ�x; y; z� �
Z

x

−∞
G�x 0 − x�δ�x 0; y; z�dx

with G the Gaussian kernel G�x� � 1∕� 						
2π

p
Δxe� exp�−1∕2x2∕

�2Δxe�2� or any other similar kernel. The new effective grid resolu-
tion is tested in Fig. 17b, which shows the errors in the mean velocity
as a function ofΔ∕�δ. In the fuselage, the errors for constant-size grids
collapse with the reference error from turbulent channel flows, con-
firming that the diminished performance of constant-size grids is
merely amatter of downstream error propagation. The collapse of the

errors at the juncture and trailing-edge regions is also significantly
improved between constant-size and BL-conforming grids using
Δ∕�δ, suggesting that the same argument applies to these cases as
well. Errors in the fuselage for BL-conforming grids remain saturated
at roughly 2%. In general, constant-size grids display a lower effec-
tive resolution (Δ∕δ < Δ∕�δ) than BL-conforming grids (Δ∕δ ≈ Δ∕�δ
for Remin

Δ < Rex), which explains the poorer performance of the
former. Hence, the long convective distance for error propagation
from the leading edge combined with the higher upstream errors for
constant-size grids accounts for the improved performance of BL-
conforming grids reported in Fig. 17a.

D. Effect of Leading-Edge Grid Resolution

The effect of leading-edge resolution on the accuracy of the mean
velocity profiles is evaluated by comparing C-N5-R2e3 and C-N5-
R5e3. Both cases share the same points per boundary-layer thickness
(δ∕Δ � 5) but differ on the value of Remin

Δ , namely Remin
Δ � 2.6 ×

103 and Remin
Δ � 5.8 × 103 for C-N5-R2e3 and C-N5-R5e3, respec-

tively. It was argued that Remin
Δ can be understood as a quantification

of the leading-edge grid resolution such that, for constant Nbl,
decreasing Remin

Δ implies finer resolution at the leading edge. Other
characterizations of the leading-edge resolution instead ofRemin

Δ are
possible, and an alternative is discussed in Appendix A. A com-
parison of the resolution maps for cases C-N5-R2e3 and C-N5-
R5e3 is presented in Fig. 18. Increasing the value of Remin

Δ by a
factor of two lessens the portion of the wing area resolved with
Nbl � 5. Following the assumptions introduced in Sec. III.B for
ZPGTBL, the streamwise extent of the underresolved leading-edge
region (L0; see Fig. 3b) scales asL0∕L ∼ �Remin

Δ Nbl�7∕6Re−1 in first-
order approximation. Thus, increasing Remin

Δ by a factor of twowill
roughly double L0, consistent with the growth of the shading area
observed in Fig. 18.
The consequences of diminished leading-edge grid resolution

are appraised in Figs. 19a–19c, which compare the mean velocity
profiles for C-N5-R2e3 and C-N5-R5e3 at the three locations con-
sidered. Unsurprisingly, the mean velocity profiles improve for
decreasing Remin

Δ . The relative error in the mean velocity profile as
a function of Remin

Δ is shown in Fig. 19d, which quantifies more
rigorously the dependence of εu with Remin

Δ . A simple model for the
propagation of errors from the underresolved leading edge to the
downstream location x can be constructed by assuming that εu
will decay linearly with the streamwise distance to the leading edge,
εu ∼ 1∕Nbl�1� Γδmin∕ΔL�, where δmin is the minimum δ resolved
with Nbl points, ΔL � x − L0 is the distance to the underresolved
leading edge, and Γ controls the lasting effects of error propagation
(as discussed in the previous section). For ΔL → ∞ (i.e., x far from
the leading edge), the model recovers εu ∼ 1∕Nbl � Δ∕δ (i.e., no
influence from leading-edge errors). Expressing the errors in terms of
the grid parameters �Nbl; Re

min
Δ � under the assumption of ZPGTBL
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1

5

20

100

b)

Fig. 17 Errors in themeanvelocity profile (symbols) at the three locations shown inFig. 11 using the same color code: red (fuselage), black (juncture), and
blue (separation): a) error in mean velocity profile predicted by WMLES as a function of the grid resolution normalized with the local boundary-layer
thickness and b) error in the mean velocity profile predicted byWMLES as a function of effective upstream-averaged grid resolutionΔ∕�δ. The value of �δ
was calculated forΔxe � 300δ0. Open symbols denote constant-size grids and closed symbols denote BL-conforming grids. The red dotted line in panels is
the reference error for a turbulent channel flow εu � 0.08Δ∕δ.
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yields εu ∼ 1∕Nbl�1� ΓRemin
Δ Nbl∕�Rex − �Remin

Δ Nbl∕K�7∕6��, where
Rex is the Reynolds number based on the distance to the leading edge
andK is a constant. Themodel errors are included in Fig. 19d (dashed
lines) and provide a reasonable explanation of the trends obtained
from WMLES.
Although not shown, a power law approximation of εu in the range

of Remin
Δ considered in Fig. 19d shows that the WMLES predictions

approach the experimental solution as �Remin
Δ �α, with α ≈ 1–2. These

local convergence rates are steeper than those for Nbl reported in the
previous section. Considering that the dependence of the total num-
ber of grid points is also milder for Remin

Δ (i.e.,Npoints ∼ �Remin
Δ �−5∕6)

than for Nbl (Npoints ∼ N13∕6
bl ), the scaling of the grid resolution

requirements for the leading-edge region is less demanding than
the resolution to resolve the remaining turbulent boundary layers.
An important caveat of the present setup is that both the experiment

and WMLES calculations were tripped at the leading edge of the
wing. This prevents us from evaluating the grid limitations in the
presence of untripped laminar-to-turbulent transition. A second
remark is that our analysis was conducted at a low angle of attack,
and different conclusions might hold at higher values. In particular,
investigations on a NACA 0012 [70] have shown that the flow
prediction along the whole chord of the airfoil could be dramatically
affected by the grid resolution details at the leading edge. Our results
do not display this sensitivity, and our model does not account for the
possibility of such drastic changes.
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Fig. 19 a)Mean velocity profiles at a) fuselage region, b) juncture region, and c) separation zone for case C-N5-R2e3 (°) andC-N5-R5e3 (□). Colors denote
different velocity components. Experiments are denoted by dashed lines. Wall-normal distance is normalized by the local boundary-layer thickness δ at the
respective location.d)Errors in themeanvelocityprofile (symbols) as a functionofRemin

Δ at the three locations shown inFig. 11using the samecolor code: red

(fuselage), black (juncture), and blue (separation). Dashed lines are proportional to εu ∼ 1∕Nbl�1� ΓRemin
Δ Nbl∕�Rex − �Remin

Δ Nbl∕K�7∕6��, with Rex the
leading-edge Reynolds number, Γ � 300, and K � 0.16.

Fig. 18 Resolution map to test the effect of leading-edge grid solution. Points per boundary-layer thickness δ∕Δ for a) case C-N5-R2e3 (Remin
Δ �

2.8 × 103) and b) case C-N5-R5e3 (Remin
Δ � 5.6 × 103). L0 denotes the streamwise extent of the underresolved leading edge, i.e., region with δ∕Δ < Nbl.
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E. Pressure Coefficient

The surface pressure coefficient along the chord of the wing is
shown in Fig. 20. The predictions are compared with experimental
data at four different y locations denoted by the red lines in Fig. 20f.
The error inCp is quantified in Fig. 21 as a function ofΔ∕δc, where δc
is the averaged δ along the x direction. Overall, WMLES agrees with
the experimental data towithin 1–5%error. The predictions remain to
within 5% accuracy even when the boundary layers are marginally

resolved (i.e., 0–1 points per δ). The accurate prediction of Cp along
the main wing is a common observation in CFD of external aerody-
namic applications with attached flows. As discussed in Sec. IV, the
result can be attributed to the inviscid nature of the mean pressure.
Under the thin boundary-layer approximation, the inviscid outer-
flow pressure is directly imposed on the wall, which makes Cp

relatively insensitive to the details of the near-wall turbulence. This
is demonstrated by performing an additional inviscid calculation

Fig. 20 The surface pressure coefficientCp along the wing normalized by the local chord ci andwith respect to the local leading-edge coordinate xi: a–d)
Cp for casesC-D7,C-D4,C-D2,C-N5-R2e3, andC-N5-R2e3 at different y locations; e)Cp for caseC-D2 and a case identical toC-D2 but imposing free-slip

boundary condition at the walls; f) locations over the wing selected to plot Cp in a–e.
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similar to C-D2 but imposing the free-slip boundary condition at the
wall such that boundary layers are unable to develop (Fig. 20e). The
Cp for the case with free-slip wall is strikingly similar to its wall-
modeled counterpart, confirming that Cp is dominated by inviscid
contributions. The results also support the error analysis in Sec. IV,
where it was argued that errors in Cp of the form εp � βp�Δ∕δ�αp
should have βp ≪ 1 and αq ≈ 0.
The main discrepancies with experiments are at the leading edge

and wing tip. The conditions for the thin boundary-layer approxima-
tion require the wall radius of curvature to be much larger than the
boundary-layer thickness. This requirement might be satisfied to a
lower degree in the vicinity of the wing leading edge, which explains
the slightly poorer predictions and higher sensitivity to Δ in that
region. The tripping methodology used in WMLES differs from the
experimental setup, which may also contribute to the discrepancies
observed with experiments at the leading edge. The inviscid
assumption for Cp would not hold in the wing tip region due to the
formation of the wing tip vortex by viscous roll up. This is corrobo-
rated in Fig. 20d, which shows that WMLES underpredicts the Cp at
the trailing edge of the wing tip with high sensitivity to the grid
resolution. Figure 21b further reveals that the errors at the wing tip
follow a linear relation, εp ∼ �Δ∕δc�. The best Cp prediction at the
wing tip is attained by case C-N10-R2e3, which supports the strong-
est vortex core at the trailing edge as evidenced by the largest value of
−Cp. By construction, BL-conforming grids are designed to cluster
points in those regions where viscous effects are important (see
Sec. III.A). In the case of the wing tip, the equalization of the top
and bottom pressure of thewing results in a crossflow boundary layer

that is effectively captured by BL-conforming grids, and this in turn
permits the formation of stronger andmore realistic wing tip vortices.
Overall, the outer-flow nature of Cp is encouraging for the pre-

diction of the pressure-induced components of the lift and drag
coefficients. Our results, like previous studies in the literature, sug-
gest that Cp might not be a particularly challenging quantity to
predict in the presence of wall-attached boundary layers (for exam-
ple, over the main body of the wing at low angles of attack). Hence,
efforts should be devoted to improving the predictions at the leading
edge and wing tips and to predicting other viscous-dominated quan-
tities such as the skin-friction coefficient.

F. Visualization of the Separation Bubble

The mean wall-stress streamlines for case C-D0.5 are shown in
Fig. 22. The figure also contains a depiction of the average length and
width of the separation bubble, which are about 100 and 60 mm,
respectively, for case C-D0.5. Direct comparison of these dimensions
with oil-film experimental results shows that theWMLES prediction
is about 15% lower than the experimental measurements (120 ×
80 mm), consistent with previous WMLES investigations [26–28].
Nonetheless, it is important to note that the sizes of the separation
bubble fromWMLESare calculated from the time-average tangential
wall-stress streamlines, whereas the experimental sizes are obtained
from the pattern resulting from the temporal evolution of the oil film.
Albeit both methodologies provide an average description of the size
of the separation zone, they do not allow for one-to-one comparisons,
and we should not interpret the present differences as a faithful
quantification of the errors.

a)

0

10

20

30

40

50

60

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

10

20

30

40

50

60

b)

Fig. 21 Errors in the surface pressure coefficient at a) y � 482.6mm (close to the crank chord) and b) y � 1663.7mm (wing tip) as a function of Δ∕δc,
where δc is the averaged δ along the streamwise direction of the station considered. The black dashed line in Fig. 21a is εp � 5% and in Fig. 21b εp ∼ Δ∕δc.

Fig. 22 a) Streamlines of the average tangential wall-stress for C-D0.5 and b) experimental oil-film visualization.

16 Article in Advance / LOZANO-DURÁN, BOSE, AND MOIN

D
ow

nl
oa

de
d 

by
 2

3.
30

.1
64

.2
06

 o
n 

N
ov

em
be

r 
15

, 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

06
10

41
 



VI. Conclusions

The cost and error scaling of WMLES for external aerodynamic
applications has been investigated. The NASA Juncture Flow was
selected as representative of an aircraft with trailing-edge smooth-
body separation. The simulations were conducted using charLES
with Voronoi grids at an angle of attack of 5 deg andRe � 2.4 × 106.
Two gridding strategies have been examined: 1) constant-size grid, in
which the near-wall grid size has a constant value and 2) boundary-
layer-conforming grid (BL-conforming grid), in which the grid size
varies to accommodate the growth of the boundary-layer thickness δ.
In the latter, the boundary-layer thickness was estimated by the
difference between the solution of WMLES and an inviscid calcu-
lation. BL-conforming grids are characterized by Nbl (number of
points per δ) and Remin

Δ (minimum grid-size Reynolds number), and
their cost in terms of the number of control volume scales roughly as
N13∕6

bl Re�Remin
Δ �−5∕6. This implies that the cost of WMLES grows as

N13∕6
bl ≈ N2

bl, and from there the critical importance of assessing the
minimum value ofNbl to attain the desired accuracy in the quantities
of interest.
The focus of this work has been on the prediction of the mean

velocity profile and the surface pressure coefficient Cp. The analysis
was accompanied by theoretical estimations of the error in a zero-
pressure gradient turbulent boundary layer (ZPGTBL), which was
used as the baseline to assess the performance of WMLES in the
NASA Juncture Flow. From a theoretical viewpoint, the errors in the
Cp are expected to be low and mostly grid-independent at regions
where the thin boundary-layer approximation holds. For the mean
velocity profile, the errors should scale linearly with the grid size for
flows resembling a ZPGTBL. Two types of wall-modeling errors have
also been distinguished: internal errors, due to the limitations of the
wall model to represent the near-wall turbulence (e.g., law of thewall),
and external errors, which originate from the outer LES solution.
Three different locationswere considered to investigate the errors in

the mean velocity profile: the upstream region of the fuselage, the
wing-body juncture, and the wing-body juncture close to the trailing
edge. The last two locations are characterized by strong mean-flow
three-dimensionality and separation. A summary of the errors incurred
byWMLES in predicting mean velocity profiles is shown in Fig. 17a.
The message conveyed by the results is that WMLES performs as
expected in regionswhere the flow resembles a zero-pressure-gradient
turbulent boundary layer, consistent with the theoretical predictions.
However, there is a decline of the current models in the presence of
wing-body junctions and, more acutely, in separated zones. These
errors are mitigated by the use of BL-conforming grids, which enable
amore efficient distribution of grid points across the boundary layer. It
was argued that the improved accuracy provided by BL-conforming is
related to the reduced propagation ofWMLES errors along the stream-
wise direction of the flow. Nonetheless, the errors in the juncture and
separated region exhibit slow convergence rates regardless of the grid
strategy, rendering the brute-force grid-refinement approach too costly
as a pathway to improve the accuracy of the solution. The results
reported for the mean velocity profile converge monotonically to the
experimental solution. However, it has been shown that WMLES can
exhibit a nonmonotonic convergence for some intermediate grid res-
olutions in the rangeΔ ≈ 0.03–0.05δ, which might pose an additional
challenge to the robustness and reliability of WMLES.
The impact on the solution of the errors from the underresolved

leading edge was also analyzed using BL-conforming grids. The
leading-edge grid resolution was controlled by the parameter
Remin

Δ . In first-order approximation, the leading-edge errors decay
linearly with the streamwise distance to the underresolved leading
edge. However, these errors can still propagate downstream for long
distances, deteriorating the quality of the solution even at the wing
trailing edge. In spite of that, the convergence rate of the solution for
decreasingRemin

Δ suggests that the leading-edge grid resolutionmight
be less demanding than the grid resolution required to resolve the
subsequent turbulent boundary layers. This study is limited to low
angles of attack, and different conclusions might hold at higher
values, especially involving flow separation and stall. In addition,
the NASA Juncture Flow Experiment and our simulations are both

tripped close to the leading edge, which may also bias the obser-
vations.
The errors in the mean pressure coefficient were assessed at four

spanwise locations ranging from the fuselage to the wing tip. The
prediction of Cp in the main wing is below 5% error for all grid sizes
considered, even when boundary layers were marginally resolved.
This high accuracy can be attributed to the inviscid nature of themean
pressure, which makes Cp insensitive to flow details within the
turbulent boundary layer. The most challenging locations for
WMLES are the leading edge and wing tip, where the inviscid
assumption breaks down. Similarly to the mean velocity profile,
BL-conforming grids deliver higher accuracy in the prediction of
Cp at the wing tip with a lower computational cost.
Other relevant quantities of interest not investigated here include

the pointwisemean stress at thewall and integrated quantities such as
lift, drag, and moment coefficients, the last three being particularly
important for engineering applications. Unfortunately, the pointwise
friction coefficient is not available from the experimental campaign
of the NASA Juncture Flow, which hinders the ability to assess the
performance of thewall models more thoroughly. Information on the
lift, drag, and moment coefficients is also lacking, and the impact of
the modeling deficiencies identified on these quantities remains
uncertain at this point.
The results presented here highlight the benefits ofBL-conforming

grids in terms of accuracy and computational cost. Nevertheless,
several outstanding issues that remain to be solved have also been
identified. Among them are the decline in performance of current
modeling approaches in separated regions and corner flows, the
nonmonotonic convergence ofWMLES, and the necessity of acquir-
ing richer experimental measurements (such as pointwise skin fric-
tion coefficient) to assess and aid the development of models.

Appendix A: Grid Point Count of BL-Conforming
Grids in ZPGTBL

Let us consider a ZPGTBL over a flat plate of streamwise length
Lx, spanwise width Lz, and leading edge at x � 0. We aim at
calculating the number of grid points required for WMLES using
BL-conforming grids with Nbl and Remin

Δ . A schematic of the dis-
tribution of grid points was shown in Fig. 3b. The grid resolution at a
given x isΔ�x� � δ�x�∕Nbl for δ > δmin � ΔminNbl. Once the boun-
dary-layer thickness is below δmin, the grid resolution is kept constant
to Δmin. The number of grid points can be divided into points at the
leading edge NLE and the rest NR. Assuming a fully turbulent
boundary layer growing as δ∕x � KRe

−1∕7
x with Rex � xU∞∕ν

and K � 0.16, the number of grid points is

Npoints � NLE � NR

� LzN
13∕6
bl

LxK
7∕6

Re

�Remin
Δ �5∕6

� 7

5

LzN
13∕6
bl

LxK
7∕6

Re

�Remin
Δ �5∕6

�
1 −

�NblRe
min
Δ ∕K�5∕6

Re5∕7

�
(A1)

where Re � LxU∞∕ν. Equation (13) shows that the number of grid
points for BL-conforming grids scales as N13∕6

bl �Remin
Δ �5∕6Re, which

is exact for ZPGTBLwith δ following the one-seventh growth law. In
the case of the NASA Juncture Flow, the value ofNpoints differs from
Eq. (13) (as seen in Fig. 6) due to deviations in δ from a ZPGTBL and
the geometric complexities of the aircraft surface, which makes Δ a
function of the two wall-parallel directions. Nonetheless, Eq. (13)
offers a simple model to rationalize the scaling of the cost of flow
simulations for an aircraftlike geometry dominated by attached
boundary layers
We have characterized the quality of BL-conforming grids as a

function ofNbl andRemin
Δ , where the latter is ameasure of the leading-

edge resolution. An advantage of using Remin
Δ is that it grants direct

control over the minimum grid size Δmin. However, the streamwise
extent of the underresolved leading-edge region (L0 at which
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δ � δmin, Fig. 3b) will change with varying Nbl even if Remin
Δ is

held constant. This can be seen from the relation L0∕Lx �
�Remin

Δ Nbl∕K�7∕6Re−1. To avoid changes in L0 with Nbl, an alter-
native approach is to replace Remin

Δ by the underresolved leading-
edge Reynolds number ReL0

� U∞L0∕ν. The price to pay for using
ReL0

instead of Remin
Δ is the lack of direct control over Δmin and the

complexities of calculatingL0 in the actual geometry. The number of
grid points to resolve a flat plate as a function ofNbl and ReL0

is now
given by

Npoints � NLE � NR

� LzN
3
bl

LxK
2

Re

Re
5∕7
L0

� 7

5

LzN
3
bl

LxK
2

Re

Re
5∕7
L0

�
1 −

�
ReL0

Re

�
5∕7�

(A2)

which shows that the new expected cost scales as N3
blRe

−5∕7
L0

Re. The
modification of the cost-scaling law forWMLESwith the selection of
either Remin

Δ or ReL0
should come as no surprise, as each choice

constitutes a different grid strategy. In this work, we have favored
Remin

Δ due to its simplicity. Nonetheless, other parametrizations, such
as ReL0

, might also provide acceptable descriptions of the leading-
edge grid resolution.

Appendix B: Nonmonotonic Convergence of WMLES

The purpose of this appendix is to document more thoroughly the
convergence of WMLES in turbulent channel flows using charLES
with Voronoi isotropic grids. The friction Reynolds number is set to
Reτ � 4200, and seven grid resolutions are considered:Δ∕δ � 1∕3,
1/5, 1/10, 1/20, 1/40, 1/80, and 1/160. The last four grid sizes are finer
than oneswe could afford for the Juncture FlowExperiment. To assess
the effect of the numerical scheme and gridding strategy, the results are
compared with the error obtained fromWMLES of turbulent channel
flows using the finite-difference solver with staggered grid from
Lozano-Durán and Bae [71] and Lozano-Durán et al. [72]. All the
simulations are conducted with the dynamic Smagorinsky model and

the equilibrium wall model. The channels are driven by holding the
centerline velocity Uc to a constant value. Figure B1a contains the
mean velocity profiles obtained with charLES for the all the grid
resolutions considered. The error in the mean velocity profile is
reported in Fig. B1b as a function of Δ. The results show a non-
monotonic convergence of εu, and errors from both solvers deviate
from εu ∼ Δ forΔ∕δ ≈ 0.03–0.05. The linear trend is recovered again
for Δ∕δ < 0.03.
The nonmonotonic convergence of the mean velocity profile was

also observed by Lozano-Durán and Bae [61]. They argued that this
behavior can be traced back to the ability of the LES grid to support
streamwise velocity streaks in the absence of an SGS model. To test
this idea, we repeat the simulations in charLES without an explicit
SGS model; that is, the numerical truncation errors act as the SGS
model. To avoid any errors from thewall model, the equilibrium wall
model is replaced by an exact wall-stress boundary condition in
which the mean wall stress from DNS is directly imposed at the
walls. Visual inspection of the instantaneous streamwise velocity for
cases without an SGS model in Fig. B2 shows that there is a
substantial change in the flow structure at the critical grid size
Δc∕δ ≈ 0.03–0.05. For Δ > Δc, the streamwise velocity lacks the
characteristic features from wall turbulence and exhibits instead a
highly noisy structure (Fig. B2a), as expected for LES in coarse grids
without an explicit SGS model. On the other hand, a clearly defined
streaky structure emerges forΔ < Δc (Fig. B2b), even in the absence
of the SGSmodel. We can hypothesize that the transition observed at
Δc will also take place in the presence of an explicit SGS model,
causing the nonmonotonic convergence of εu reported in Fig. B1b.
Note that the flow transition observed at Δc is independent of wall-
modeling errors, as the simulations were performed by imposing the
mean exact wall stress from DNS. In actual WMLES, the underper-
formance of the SGS model will propagate to the wall model via
external errors as discussed in Sec. IV. It is interesting that the critical
grid resolutionΔc is roughly the same for the two solvers considered
despite the fact that they comprise different numerical schemes and
grid strategies. The latter observation points to a physical origin ofΔc

in the sense that its value is dictated by physical constraints rather

0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.2

0.4
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1
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10-2 10-1 100

1
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Fig. B1 a) Mean velocity profile for WMLES with charLES of a turbulent channel flow. Colors denote different grid resolutions from coarser to finer:
blue, red, yellow, purple, and green. b) Error in the mean velocity profile εu as a function of the grid resolutionΔ forWMLES of turbulent channel flow.
Symbols denote simulations using charLESwithVoronoi grids (□, red) and finite-difference solverwith staggered grids (Δ, blue). Dashed line is εu ∼ Δ∕δ;
horizontal dotted line is the error from the inviscid solution.

Fig. B2 Instantaneous streamwise velocity in a turbulent channel flow at the wall-parallel plane y � 0.3δ. Simulations are performed using charLES
without SGSmodelwith grid resolutions: a)Δ � 0.05δ and b)Δ � 0.025δ. The latter case is able to support streaky velocity structures even in the absence
of explicit SGS model.
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than by the numerical details of the solver, at least for low dissipation
and energy-preserving numerical schemes. Indeed, [61] showed that
the grid resolution to resolve 90% of the turbulent kinetic energy is
Δmin ≈ 0.04δ at y ≈ 0.5δ, that is, roughly equal to Δc. Although the
results here provide some insight into the origin of the nonmonotonic
convergence of WMLES, we still lack a satisfactory explanation of
the phenomenon and, more importantly, a robust remedy.
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