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Abstract: In this review, we summarize existing trends of flow control used to improve the aero-
dynamic efficiency of wings. We first discuss active methods to control turbulence, starting with
flat-plate geometries and building towards the more complicated flow around wings. Then, we dis-
cuss active approaches to control separation, a crucial aspect towards achieving a high aerodynamic
efficiency. Furthermore, we highlight methods relying on turbulence simulation, and discuss various
levels of modeling. Finally, we thoroughly revise data-driven methods and their application to flow
control, and focus on deep reinforcement learning (DRL). We conclude that this methodology has the
potential to discover novel control strategies in complex turbulent flows of aerodynamic relevance.

Keywords: turbulence; flow control; simulation; aerodynamics; machine learning; deep reinforce-
ment learning

1. Introduction

Over the past decades, aviation has become an essential component of today’s glob-
alized world: before the current pandemic of coronavirus disease 2019 (COVID-19), over
100,000 flights took off everyday, allowing the transportation of people and goods and
the establishment of global commercial relations. Despite the significant impact of the
pandemic on the aviation sector, a number of studies indicate that, after the pandemic, its
relevance in the transportation mix will be similar to that before COVID-19 [1,2]. Aviation
alone is responsible for 12% of the carbon dioxide emissions from the whole transportation
sector and for 3% of the total CO2 emissions in the world [3]. On the other hand, fuel repre-
sents around 40% of the costs in regular airlines, corresponding to hundreds of millions of
dollars spent yearly [4]. This has important implications in the context of the Sustainable
Development Goals (SDGs) 9 (on sustainable infrastructure) and 11 (on sustainable cities),
as well as having an important impact on SDGs 3 (on health) and 13 (on climate change)
from the United Nations (UN) 2030 Agenda [5–7]. Due to the major environmental and
economic impacts associated with aviation, it is desirable to improve the aerodynamic per-
formance of airplane wings, with the aim of reducing the fuel consumption and emissions
associated with air travel.

In order to develop more efficient wings, it is necessary to reduce the losses associated
with their movement within the surrounding fluid. This implies reducing the force parallel
to the incoming flow (the drag), and one of the strategies to achieve such a reduction is to
perform flow control. A wide range of methods aimed at controlling the flow to reduce the
drag have been reported, and some have documented net-energy savings, i.e., taking into
account the energy spent on the control, as documented by Fahland et al. [8]. These strate-
gies include passive methods, such as riblets [9], which are drag-reducing surfaces proven to
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be successful in passenger aircraft [10], and active techniques, in which the drag reduction
effect is achieved through an action that requires additional energy to be transferred to the
flow [11]. When the control action is determined based on the instantaneous flow state,
sensing is required and the control strategy is denoted as reactive [12], whereas in predeter-
mined strategies, the control is decided a priori [13]. Predetermined strategies are appealing
due to their simple implementation; however, reactive methods are the ones that have the
highest potential to reduce drag. Note that currently available reactive controls, such as
opposition control [14,15] through blowing and suction at the wall, are simply based on an
ad hoc gain to relate the sensed velocity fluctuation and the actuation (see Section 1.1 for
more details). It is important to highlight that the total drag in subsonic transport aircraft
can essentially be decomposed into four components, namely: friction drag, lift-induced
drag (where the lift is the aerodynamic force perpendicular to the incoming stream), wave
drag, and parasite drag. Whereas the latter two only represent up to 10% of the total
drag, the first and second are responsible for around 50% and 40%, respectively, in cruise
conditions [16,17]. Although the continuous design optimization carried out over the past
decades has led to reductions in the drag, new innovative approaches are required in order
to obtain significant improvements in aerodynamic performance [18]. In the following, we
will discuss different types of active control in more detail.

1.1. Active Control of Turbulent Flows

A widely used method of predetermined active flow control is uniform blowing/suction.
The first wind-tunnel experiments using the micro-blowing technique (MBT) [19] reported
that it is possible to achieve a significant drag reduction with relatively moderate blowing,
as well as to have net-energy savings in full-scale applications. More recent studies have
confirmed this possibility, investigating the effects of MBT on more complex geometries
and on adverse-pressure-gradient (APG) turbulent boundary layers (TBLs). A detailed
description of the MBT technique is provided by Hwang [20], and Kornilov [21] discusses
more recent developments, particularly regarding experimental results. On the other hand,
high-fidelity numerical simulations have been used to better characterize the interaction
between control and wall-bounded turbulence. One of the first numerical studies investi-
gating TBLs with blowing and suction is that of Park and Choi [22], who employed direct
numerical simulations (DNSs, in which all turbulent scales are resolved) and considered
a Reynolds number based on displacement thickness δ∗ and freestream velocity U∞ of
Reδ∗ = 500. Kametani and Fukagata [23] performed DNS of a zero-pressure-gradient (ZPG)
TBL with blowing and suction at Reynolds numbers based on momentum thickness Reθ

between 300 and 700, with intensities up to 1% of U∞. They also analyzed the energy input
associated with uniform blowing to estimate the upper bound of control efficiency, and
they confirmed that it is theoretically possible to achieve net-energy savings. As expected,
uniform suction has opposite effects. Later, other numerical simulations (more relevant to
the full-scale conditions) have been performed at higher Reynolds numbers. For instance,
Kametani et al. [24] carried out high-resolution large-eddy simulations (LESs, where only
the smallest turbulent scales are modelled) of a ZPG TBL at Reθ = 2500, considering
blowing and suction with an intensity of 0.1% of the freestream velocity. These authors
achieved more than 10% drag reduction despite the relatively low blowing intensity.

The numerical studies discussed above are focused on the description of the effect
of blowing on a spatially developing ZPG TBL, which is an idealized study case. Firstly,
more realistic scenarios exhibit more complex turbulent flows [25], including as pressure-
gradient TBLs [26] and finite aerodynamic bodies [27,28]. In these cases it is not trivial
to generalize the control techniques. Secondly, the skin-friction reduction is beneficial in
engineering applications only if it corresponds to a reduction of total drag (which includes
additional components as discussed above), and/or to an improvement of the aerodynamic
efficiency (defined as the lift-to-drag ratio L/D). For these reasons, the two following
experimental studies on the effects of blowing and suction in airfoils are of particular
relevance. We first discuss the work by Eto et al. [29], who applied a blowing intensity
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of 0.14% of U∞ to the suction side of a Clark-Y airfoil at Rec = 1, 600, 000 (where Rec is
the Reynolds number based on U∞ and wing chord c). They observed a local reduction
in the skin friction between 20 and 40%, but they also reported an increase in the total
drag. On the other hand, Kornilov et al. [30] carried out experiments on a NACA0012
airfoil at Rec = 700, 000, applying blowing and suction over both sides of the airfoil. They
confirmed that blowing over the suction side does not reduce the total drag, but they
also observed that blowing over the pressure side and suction over suction side have a
beneficial effect, achieving a reduction in total drag of around 10%. This highlights the
additional difficulty of performing control in wings, where the various contributions to
the total drag are tightly coupled. One of the first high-fidelity simulations of turbulent
wings with control was conduced by Vinuesa and Schlatter [31] in 2017. In that work, as
well as in more recent studies [32], high-resolution LES was used to study the turbulent
flow around a NACA4412 wing section, up to Rec = 400, 000, where different combinations
of blowing and suction rates over the suction and pressure sides were applied. Using
predetermined active flow control, they achieved a maximum increase in the aerodynamic
efficiency of 11% [32]. In Figure 1 we show the effect of applying uniform blowing on the
suction side of the wing section, which leads to an increase in boundary-layer thickness and
turbulence activity far from the wall. This produces a reduction in the wall-shear stress and
an increase in the pressure drag, leading to a higher total drag; note that the opposite holds
for uniform suction [32]. Another interesting numerical work is that of Albers et al. [33],
who performed LES on an airfoil at Rec = 400, 000 to assess the effect of transversal surface
waves, reporting a drag reduction of 7.5%. As discussed below, it is possible to obtain
more sophisticated and efficient control strategies by sensing the flow and exploiting all
the available information on its state, i.e.,, by performing reactive flow control.

Figure 1. Instantaneous visualization of coherent vortical structures [34] around a NACA4412 wing
section at Rec = 400, 000, colored by streamwise velocity ranging from (dark blue) −0.2 to (dark red)
1.7. The yellow line indicates the extent of the control region (with uniform blowing on the suction
side), whereas the red one denotes the tripping location [35,36]. Figure extracted from Ref. [32], with
permission of the publisher (Springer Nature).

A widely used method of reactive control is the so-called opposition control, where
suction and blowing are introduced at the wall with the aim of suppressing the sweep and
ejection events in the near-wall region, so as to reduce the skin friction [14]. Essentially,
the velocity imposed at the wall vw should be opposite to the wall-normal velocity v at a
certain sensing plane ys, according to the equation:

vw(x, 0, z, t) = −α[v(x, ys, z, t)−V(ys, t)]. (1)

Note that here x, y and z denote the streamwise, wall-normal and spanwise coordinates, t is
the time, α is a positive constant and V is the instantaneous wall-normal velocity averaged
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over the control area. Subtracting this term ensures a zero-net-mass-flux condition at the
wall. It is important to note that, through this equation, the control aims at opposing
the fluctuations at a certain wall-normal location, which is typically around the near-wall
fluctuation peak, i.e., y+s = 15. The superscript ‘+’ denotes inner scaling, in terms of the
viscous length `∗ = ν/uτ , where ν is the fluid kinematic viscosity and uτ =

√
τw/ρ is the

friction velocity (with τw being the wall-shear stress and ρ the fluid density). The constant
α is set empirically, which means that the resulting control law is relatively simple. Despite
this simplicity, Stroh et al. [15] reported drag-reduction rates of around 20% in turbulent
channels and boundary layers up to Reτ ' 660 (which is the friction Reynolds number,
based on the 99% boundary-layer thickness δ99 and the friction velocity uτ). However, it
may be possible to obtain more sophisticated control laws by formulating an optimization
problem, as discussed in Section 3.

1.2. Active Control of Separation

Several studies exploring the capabilities of active flow control (AFC) actuators in
high-lift devices with massive separation (i.e., suction and blowing, sweeping jets, fluidic
oscillators, plasma actuators, synthetic jets) have been conducted in the literature. A brief
review on the state-of-the-art of active flow control techniques for civil aircrafts was carried
out by Batikh et al. [37]. Khodadoust and Washburn [38] conducted wind-tunnel measure-
ments on a high-lift device fitted with AFC actuators. They observed that the application
of a small amount of suction and blowing increased the lift performance. Khün et al. [39]
simulated a 3D high-lift wing with constant blowing using RANS. The results showed that
blowing can be beneficial to suppress massive separation in the flap. Radespiel et al. [40]
reviewed different techniques for AFC using constant blowing, showing that tangential
blowing can be promising when increasing the lift at high angles of attack. Fricke et al. [41]
simulated the AFC by means of pulsed blowing to control flow separations in the wing
engine junction with RANS. Later, Schloesser et al. [42] conducted experimental investiga-
tions in the same configuration. Their results showed that AFC successfully suppressed the
flow separation with a lift increase and that the results are independent of the Reynolds
and Mach numbers. Hue et al. [43] used a RANS-simulated constant and pulsed blowing
devices and observed gains of up to 3% in the lift and the retard in separation due to the
nacelle. Fluidic actuators placed at a tail of an aircraft were simulated using unsteady RANS
and validated by means of experimental results by Shmilovich et al. [44]. More recently,
Andino et al. [45] tested fluidic actuators in a generic tail at low speeds and demonstrated
that a modest increase in the momentum coefficient can result in important increments
of the side force. Whalen et al. [46] presented wind-tunnel test results of the AFC of the
vertical tail of a Boeing 757 equipped with sweeping jet actuators; a significant increase in
the side force at a maximum rudder deflection of 30◦ was observed. Other works involving
the use of sweeping jets can be found in Refs. [47,48]. The effectiveness of microjets in
drag reduction was experimentally studied by Aley et al. [49] in a simplified 2D wing; a
significant wake velocity deficit reduction and, thus, drag, was observed when using the
microjets actuation.

To finalize, we focus on the application of synthetic jets with zero net mass flux as a
promising technique for the AFC of wings. In these devices, the fluid necessary to alter
the boundary layer is intermittently injected through an orifice driven by the motion of a
diaphragm located on a sealed cavity below the surface [50]. Indeed, synthetic jets have
been shown to succeed at reducing the fuel burnt during the operations of take-off and
landing [51]. In the context of synthetic jets for AFC, there have been significant advances
in the past years in airfoils (see, for instance, Refs. [52–55]). However, whether they can
be implemented on a full aircraft is still subject of investigation. Recently, Jabbal et al. [56]
analyzed different system architectures for AFC for real-size civil aircrafts in terms of
efficiency, power requirements, and integration issues. They concluded that synthetic
jets might be useful to control separation in short-duration operations. Shmilovich and
Yadlin [57] studied different AFC strategies of a high-lift profile in the conditions of take-
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off and landing using RANS. Bauer et al. [58] conducted experiments on a two-element
wing with unsteady AFC near the leading edge and showed that stall can be delayed.
Lin et al. [59] addressed different strategies in the flap of a high-lift profile comprising
steady suction, blowing, and periodic excitation of the boundary layer. Several of these AFC
strategies are planned to be tested experimentally by NASA for increasing lift-to-drag ratios
(L/D) in take-off configurations [60]. Although most of the numerical studies conducted so
far have been performed using RANS, Jansen et al. [61] proved, by comparing experimental
and numerical simulations, that delayed detached-eddy simulations are useful in the
analysis of the effect of a synthetic jet on the flow field of a tail at Rec = 350, 000. Finally,
Lehmkuhl et al. [62] have studied the aerodynamic performance of active flow control on
wings using synthetic jets with zero net-mass flow by means of wall-modeled large-eddy
simulations; see Figure 2. The performance of synthetic jets was evaluated for the high-
lift configuration of the JAXA Standard Model at realistic Reynolds numbers for landing
Rec = 1.96× 106. The results show that, at high angles of attack, the control successfully
eliminates the laminar/turbulent recirculations located downstream of the actuator, thus
increasing the aerodynamic performance.

Figure 2. JAXA Standard Model high-lift configuration at Rec = 1.93× 106 and AoA = 21.57o with
AFC. Two-dimensional streamlines at different spanwise locations: baseline case vs. different actuator
jet angles Φ. (Top left) baseline; (top right) Φ = 0o; (bottom left) Φ = 60o; and (bottom right)
Φ = 45o. Results extracted from Ref. [62], with permission of the publisher (IOP Publishing).

2. Turbulence Simulation Approaches

The use of computational fluid dynamics (CFD) for external aerodynamic applications
has been a key tool for aircraft design in the modern aerospace industry [63–65]. CFD
methodologies with an increasing functionality and performance have greatly improved
our understanding and predictive capabilities of complex flows. These improvements
suggest that the design of novel and highly reliable control strategies via CFD may soon be
a reality. The fully virtual design of flow-control strategies is expected to limit the number
of required wind-tunnel tests, reducing both the turnover time and cost of the design
cycle [66,67]. However, flow predictions from the state-of-the-art CFD solvers are still
unable to comply with the stringent accuracy requirements and computational efficiency
demanded by the industry [68]. These limitations are imposed, largely, by the ubiquity
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of turbulence [69]. To tackle current challenges and encourage further advances in CFD,
simulation of an aircraft configuration across the full flight envelope has been posed as one
of the Grand Challenge Problems in the recent NASA CFD Vision 2030 [68].

From the early days of industrial CFD to present times, the treatment of turbulence
has mostly been based on closure models for the Reynolds-averaged Navier–Stokes (RANS)
equations. The approach appears in different flavors: from pure RANS solutions to hybrid
methods, such as the detached-eddy simulation and its variants [70,71]. In the latter,
RANS is utilized close to the wall, whereas the outer layer is modeled via eddy-resolving
methodologies. Many RANS models (and their variants) have been devised to overcome
the limitations of their predecessors, usually by expanding and calibrating its coefficients
to account for missing physics. Despite the reliance of RANS-based approaches on tunable
parameters and empirical correlations, they have dominated the CFD industry for external
aerodynamic applications, including commercial aviation [72].

The sophistication of RANS closure models has increased over time [71]. However,
no practical model has emerged as a competent approach across the broad range of flow
regimes of interest to the industry. The latter encompass separated flows, afterbodies, mean
flow three-dimensionality, shock waves, aerodynamic noise, fine-scale mixing, laminar-to-
turbulent transition, etc. In these scenarios, RANS predictions tend to be inconsistent and
unreliable, especially for geometries and conditions representative of the flight envelope of
commercial airplanes. An example of such deficiencies is the prediction of the onset and
extent of three-dimensional separated flow in wing–fuselage junctures, in which RANS-
based approaches have shown poor performance [72,73]. The RANS accuracy is also
known to decline in aeroacoustic noise and vibration predictions for transonic airfoils [72].
Additional CFD experience in aircrafts at high angles of attack has revealed that RANS-
based solvers have difficulty in predicting maximum lift and the corresponding angle of
attack, along with the physical mechanisms for stall. This was highlighted in the third AIAA
CFD High Lift Prediction Workshop [74], where RANS solutions exhibited a significant
scatter in the lift, drag, and pitching moment near stall.

Recently, large-eddy simulation (LES) has gained momentum as a tool for both research
and industrial applications. In LES, the large eddies containing most of the energy are
directly resolved, whereas the dissipative effect of the small scales is accounted for by a
subgrid-scale (SGS) model. Additionally, if the near-wall flow is also modeled (i.e., wall
modeling) such that only the large-scale motions in the outer region of the boundary layer
are resolved, the grid-point requirements for this wall-modeled LES (WMLES) scale, at
most, linearly with an increasing Reynolds number [75]. The cost-efficiency of WMLES and
its demonstrated predictive capabilities over the last decade make this approach a realistic
contender to overcome the deficiencies of RANS-based methodologies.

Several strategies for modeling the near-wall region in LES have appeared in the
literature, and comprehensive reviews can be found in Piomelli and Balaras [76], Cabot
and Moin [77], Larsson et al. [78], and the most recent review by Bose and Park [79]. Most
wall models utilize, as the input, the LES solution at a given location in the LES domain,
and return the wall heat and momentum fluxes needed by the LES solver. Among the
most widespread approaches are those computing the wall stress using either the law of
the wall [80–82] or simplified RANS equations [83–90], whereas recent advances in wall
modeling are rooted in mathematical and physical principles completely free of RANS
empiricism [91–93].

Advances in machine learning and data science have also incited new efforts to
complement the existing turbulence-modeling approaches in the WMLES community.
One of the first attempts at using supervised machine learning for WMLES can be found
in Yang et al. [94], who proposed a physics-informed neural-network (PINN) model to
predict the wall stress in turbulent channel flows. Recently, Lozano-Durán and Bae [95]
formulated a wall model using building block units (such as turbulent channel flows, ducts,
and separation bubbles), which provides a classification of the flow and confidence in the
prediction. The model was validated in a realistic aircraft with trailing-edge separation.
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Radhakrishnan et al. [96] formulated a wall model using gradient-boosted decision trees
and predicted the wall shear stress in a turbulent channel flow and a wall-mounted bump.
Along these lines, Eivazi et al. [97] have recently reported efforts towards RANS modeling
by means of PINNs.

According to the NASA Vision 2030 report [68], hybrid RANS/LES and WMLES are
identified as the most viable approaches for predicting realistic flows at high Reynolds
numbers in external aerodynamics. As such, both hybrid RANS/LES and WMLES will be
instrumental in the development of control strategies for realistic external aerodynamic
applications, as shown in Figure 3.

Figure 3. Prediction of the wall shear stress in the High-Lift Common Research Model at an angle of
attack of 21 degrees computed using wall-modeled large-eddy simulation with the Alya solver on a
grid with 40 million control elements.

3. Data-Driven Methods for Control and Deep Reinforcement Learning

As discussed above, the flow around wings is very complex, and it is difficult to devise
efficient control strategies to optimize the aerodynamic efficiency, even when having access
to flow information in real time, as in the case of opposition control. One approach to obtain
more efficient control strategies is to formulate an optimization problem aimed at, e.g.,
minimizing the drag or maximizing the aerodynamic efficiency. There have been several
data-driven approaches to achieve this for flow control; for instance, in the context of genetic
programming [98]. Genetic programming (GP) is based on automatically choosing the
terms in a symbolic equation through the evolution and selection of the best candidates, a
fact that ensures the interpretability of this method [99,100], although the formula obtained
can be deeply nested and complex. The GP approach has been successfully employed for
the control of external flows by Li et al. [101] and Minelli et al. [102]. Another interesting
data-driven approach is Bayesian regression based on Gaussian processes [103], which
was employed by Morita et al. [104] in CFD optimization, and by Mahfoze et al. [105] to
identify the best combination of control region length and blowing amplitude to maximize
the energy savings, also including intermittent control regions. Note that these authors
also took into account the data by Kornilov and Boiko [106] to formulate a more realistic
estimate of the power consumption by blowing, and they reported a net-energy saving
of around 5%. It is interesting to note that other data-driven methods may help to model
the near-wall region and, consequently, may provide novel venues for improved flow
control [107–111].

One very promising data-driven approach to flow control is deep reinforcement
learning (DRL), which we will focus on in the following. In DRL, an agent (usually built
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based on a neural network, NN) interacts with an environment (the flow) in a closed
loop. At each time t, the agent receives a partial observation of the environment ot used
to choose an action at, which will influence the evolution of the environment. The agent
periodically receives a reward rt, which indicates the quality of those actions under a certain
norm. The goal of DRL is to find an optimal decision policy π from with the action is
derived, i.e., at = π(ot), such that the cumulative reward is maximized. This process is
summarized in Figure 4, and the goal of the DRL algorithm is to learn by interacting with
the environment by gathering experience [112]. A pioneering work in this direction in the
context of instability control in fluid mechanics was conducted by Rabault et al. [113], who
used DRL to optimize the actuation from two jets on a two-dimensional cylinder flow. This
resulted in significant drag-reduction rates using synthetic control jets blowing with a very
low mass-flow rate intensity (typically a fraction of the percentage of the incoming mass
flow rate intersecting the cylinder). We want to highlight that DRL is a very promising
approach to discover novel and potentially more efficient control strategies that go beyond
classical control, since i) it does not make any assumptions of the properties of the system,
except for the ability to establish a close-loop control and to extract a reward signal, and ii)
it takes advantage of the efficiency of NNs at representing complex, nonlinear functions
following their universal approximator property [114].

Figure 4. Schematic representation of the deep reinforcement learning process employed for flow
control. The objective is to find the optimal decision policy π such that the cumulative reward is
maximized.

The work by Rabault et al. [113] employed the proximal policy optimization (PPO)
algorithm [115], which is an actor-critic policy gradient algorithm. The PPO algorithm is
simpler and faster than other similar techniques, such as the trust region policy optimization
(TRPO) methods [115], and it requires relatively little hyper-parameter tuning. Furthermore,
it is more suitable for continuous control than the deep Q-network (DQN) learning [116],
as well as its variations [117]. Offering a detailed overview of the PPO algorithm is beyond
the scope of this review, and for a detailed discussion about the PPO algorithm, the reader
is referred to either the initial PPO paper [115] or to a fluid-mechanics-focused review of
the DRL and PPO method [118,119]. However, the main lines of the PPO algorithm are as
follows. The PPO method is episode-based, i.e., it learns from performing active control for
a limited amount of time before analyzing the obtained results and continuing with the
learning process in a new episode. The learning problem is aimed at iteratively training
(i.e., finding the weights of) the policy network. Denoting the set of weights of the policy
NN by Θ, the aim is, therefore, to maximize the long-term discounted reward function
R(t) = ∑t γtrt, where γ is a discount factor (usually in the range [0.95− 0.99]), formulated
as finding:

Rmax = max
Θ

E
[

H

∑
t=0

(
γtrt | πΘ

)]
, (2)

where πΘ is the policy function described by the neural network with weights Θ, and
st is the (hidden) state of the system. In the present context, st would correspond to the
complete flow information, whereas the limited observations ot would be obtained from
sensors. This maximization problem is solved by means of a gradient descent performed
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on the weights Θ of the network following experimental sampling of the system through
interaction with the environment.

Following the initial work controlling the vortex shedding in a cylinder wake, a
number of further refinements and applications have proven the potential of the method
for the control of flow instabilities. Bucci et al. [120] successfully applied DRL to control
chaotic systems, such as the Kuramoto–Sivashinsky equation. Paris et al. [121] investigated
how sensors providing an overview of the state of the system to the DRL agent can be
placed optimally. Beintema et al. [122] demonstrated efficient control of the Rayleigh–
Bénard instability in a 2D channel. Tang et al. [123] proved through numerical simulations
that DRL is able to perform robust control over a range of inflow conditions. Xu et al. [124]
investigated in a simulation how small counter-rotating cylinders can be used to reduce the
drag behind a cylinder, whereas Fan et al. [125] provided an experimental demonstration
of the technique. Finally, Ren et al. [126] pushed the value of the Reynolds number to
a weakly turbulent regime and demonstrated that DRL can control fluid motion in the
turbulent regime.

While research articles have mostly focused on relatively simple flow configurations
so far, as these are the easiest to tackle computationally for both the CFD and the DRL agent,
there are a number of possible refinements in the use of the PPO algorithm that also make
it a promising method for controlling more complex, 3D cases. Firstly, the PPO algorithm is
able to sample data from several independent environments when performing learning.
Therefore, one can effectively parallelize the DRL training by using many CFD simulations
running in parallel, as was presented by Rabault and Kuhnle [127]. This allows us to
drastically accelerate the training. In ([127], speed-ups of up to 20 were reported, though
the more complex the system is to control, the higher the speed-up attainable using this
technique). This allows us to perform reasonably fast PPO training, even in cases when the
underlying environment is difficult to speed up. For example, in the case of the CFD-based
environment, this allows us to scale the training to a number of compute cores N ×M,
where N is the number of simulations run in parallel and M is the maximum optimal
parallelization of the CFD simulation itself. Secondly, it is possible to formulate the learning
problem in such a way as to take advantage of invariants in the physical system that is
undergoing control, as was illustrated by Belus et al. [128]. In their work, Belus et al. [128]
formulated the learning problem as a self-collaborative interaction between several clones
of the same environment, as is visible in Figure 5. This, in turn, allows the DRL agent
to combine the information obtained at many locations that follow the same physical
rules into a single policy. Belus et al. [128] argue based on theoretical considerations and
prove empirically that, without such a technique, performing learning on a system with
No outputs has a cost that scales as CNo , where C is the cost of training for a single output.
This is prohibitively expensive, as the number of outputs is increased. Belus et al. [128]
then demonstrated empirically that, by contrast, using the approach presented in Figure 5
allows us to perform training at a constant cost, independently of the number of outputs,
as long as the control law to learn is similar at all outputs. This is a critical enabling factor
for the application of DRL to realistic configurations, where many similar control outputs
will be distributed across the physical system to control.
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Figure 5. Illustration of the self-collaborative approach demonstrated by Belus et al. [128] for control-
ling systems with several similar control outputs. In this method, clones of the DRL agent are used on
each of the outputs and share their experience samples and training. This allows us to learn control
laws in constant time, independently of the number of outputs used. This figure is reproduced with
minor changes from Belus et al. [128].

4. Conclusions and Outlook

Machine-learning-based control methods are an exciting set of techniques that are
receiving considerable attention recently for performing active flow control. This spike in
interest follows both increases in computational power and the development of effective
algorithms that can learn effectively through direct interaction with black-box, complex
systems. These ML methods follow a completely different approach compared with how
flow control strategies have usually been designed. Instead of performing a local analysis
of the flow properties by considering the flow equations and using advanced mathematical
and analytical tools to find optimal perturbations, ML techniques discover a control strategy
through a trial-and-error approach. There are a number of promising methods that belong
to the ML family of control algorithms, including, for example, genetic programming (GP)
and deep reinforcement learning (DRL). In this review, we focused on DRL methods in
particular, and we discussed how recent works indicate that they can be efficiently used for
controlling large, complex, non-linear systems arising from control tasks in fluid mechanics.

The efficiency of DRL has been demonstrated in a number of active flow control
situations so far, and the fluid mechanics community is progressively tackling more and
more complex flow configurations. In particular, recent works are pushing the use of DRL
for flow control into intermediate Re values, leading to more non-linear and more complex
flows, so far successfully. The next steps will be to demonstrate the DRL control of complex
3D CFD simulations and to further increase Re to reach fully turbulent conditions. While
this will pose new challenges to the DRL method due to the inherent increase in complexity
compared with the configurations studied so far, a number of preliminary works indicate
that DRL is well adapted to controlling complex systems with a large number of control
locations, and that the inherent parallelism present in the DRL experience sampling process
can offer large speed-ups on complex dynamical systems.

This push to more complex systems represents not only a scientific, but also a technical
endeavor. Indeed, applying DRL to 3D flow control at moderate to high Re will pose
a number of technical challenges regarding the amount of CFD computational power
required, the ability to handle large amounts of data, and the coupling of CFD and DRL
codes that were designed independently of each other at a time when the ability to couple
them was not yet foreseen. All these aspects put tough requirements on the level of
both expert knowledge (few people are experts in both DRL and large scale CFD) and
general technical expertise (combining several different complex software stacks into a
single system, and deploying this in HPC environments). In our opinion, these technical
challenges, rather than fundamental issues, are presently the main limiting factor for
applying ML control to active flow control. A possible way out of this challenge is to follow
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the example set by the ML community and to adopt a resolute open source release policy of
codes, scripts, tutorials, and trained networks to reduce the barrier to entry for new groups
joining in this research direction.
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