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Scaling of the velocity fluctuations in turbulent channels up to Re,=2003
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A new numerical simulation of a turbulent channel in a large box at Re,=2003 is described and
briefly compared with simulations at lower Reynolds numbers and with experiments. Some of the
fluctuation intensities, especially the streamwise velocity, do not scale well in wall units, both near
and away from the wall. Spectral analysis traces the near-wall scaling failure to the interaction of the
logarithmic layer with the wall. The present statistics can be downloaded from http:/
torroja.dmt.upm.es/ftp/channels. Further ones will be added to the site as they become available.
© 2006 American Institute of Physics. [DOI: 10.1063/1.2162185]

A direct simulation of a plane turbulent channel has been
performed in a computational box with streamwise and span-
wise periodicities L,=87h and L,=3h, at a Reynolds num-
ber Re.=2003 based on the friction velocity u, and on the
channel half-width h. It is therefore comparable with previ-
ous simulations at lower Reynolds numbers by our group.l’2
We integrate evolution equations for the wall-normal vortic-
ity w, and for the Laplacian of the wall-normal velocity
¢=V?v, as in Ref. 3. The streamwise and spanwise coordi-
nates are x and z, and the corresponding velocity components
are u and w. The spatial discretization uses dealiased Fourier
expansions in x and z, and seven-point compact finite differ-
ences in y, with fourth-order consistency and extended
spectral-like resolution.* The temporal discretization is third-
order semi-implicit Runge-Kutta.5 The details of the code
and of the parallelization strategy, as well as a fuller analysis
of the results, will be the subject of future publications. Here
we restrict ourselves to the description of the low-order
statistics and to the discussion of the scaling of the velocity
fluctuation intensities in the newly extended range of
Reynolds numbers.

Table I summarizes the parameters of the present simu-
lation as well as those of the previous ones used for com-
parison. It uses N,=6144, N,=633, N ,=4608 collocation
points. The simulation ran for about 6 X 10° processor hours
on 2048 processors of the Marenostrum computer at the
Barcelona Supercomputing Center and generated approxi-
mately 25 TB of raw data. The wall-normal grid spacing is
adjusted to keep the resolution, Ay=1.57, approximately
constant in terms of the local isotropic Kolmogorov scale
n=(1*/€)"* It is slightly better in that respect than those of
the lower Reynolds numbers. At the center of the channel the
resolutions along the three coordinates are approximately
equal, 7—1.87, comparable to those of well-resolved simu-
lations of isotropic turbulence.® The microscale Reynolds
number at that location is Rey =94. The running times are
given in terms of turnover periods for eddies of size & and of
velocity u,. For the present box they are roughly equivalent
to flowthroughs. The rms differences between one-point sta-
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tistics over the first and second halves of the run are of the
order of 1%, and the asymmetry of the profiles is of the same
order.

The mean velocity profile is shown in Fig. 1(a) in terms
of the inverse Kdrman “constant” yd,U*, where U* is the
mean velocity in wall units. This parameter is nowhere con-
stant, but that is also the case for the high-Reynolds-number
pipe data’ included for comparison, and for other experimen-
tal data not included in the figure. This is obviously the effect
of the higher-order terms usually included in the “wake”
component of the profile, but the minimum is reached in all
the numerical cases around y*=50, calling into question the
possibility, or even the relevance, of estimating the extent of
the logarithmic layer in this way. If we take the usual esti-
mate that y*=100 and y/h=<0.2, the present simulation has
a logarithmic region extending over a factor of 4. We will see
below that there is a sizable part of the channel over which
some length scales are approximately proportional to the
wall distance y.

The rms velocity fluctuation profiles are shown in Fig.
1(b). None of them collapses exactly in wall units.

In the case of the transverse components, v’ and w', the
effect is weak. The three cases collapse well near the wall
except within the buffer layer, where viscous effects are im-
portant. To our knowledge, the presence of a peak in the
spanwise component had not been described before, and it is
unclear whether it would tend to a finite limit at infinite
Reynolds numbers. Away from the wall there is a weak ten-
dency for v’ and w' to increase with increasing Reynolds
numbers, most noticeably at the center of the channel. Ex-
perimental data in pipes and channels, not shown, lend some
support to this trend, although the scatter is large and values
tend to cluster by facility rather than by Reynolds number.

The clearest effect is in the streamwise intensity u’,
which collapses neither near the wall nor far from it. The
scaling failure near the wall was first reported in boundary
layers,8 but there is no general agreement on its causes, and
the authors of that article made its explanation a challenge
for theoreticians. The available data are collected in Fig.
1(c). The intensity in the near-wall peak, which is always
achieved around y*=15, increases steadily with the Reynolds
number. The numerical cases confirm that trend. Any failure
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TABLE I. Summary of cases. The resolution is measured in collocation points, and the symbols are used in the

figures.

Re, Ax* Az* Ayrox L./h L/h tu,/h
V, Ref. 1 547 8.9 4.5 6.7 8 4 12.0
A, Ref. 2 934 9.2 3.8 7.6 8 3 8.5
O, Present 2003 8.2 4.1 8.9 8 3 10.3
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FIG. 1. (a) Inverse Kdrman constant. Symbols as in Table I. Dots with error
bars are pipes (Ref. 7) with Re,>2000. (b) Velocity fluctuation intensities,
in wall units. —, u'; — — v’; ——, w’. (c) Streamwise fluctuation intensities
from various sources. Open symbols, near-wall maximum; closed symbols,
y/h=0.15, y*>60. [J, Couette flows; A, pipes and channels; *, pipes from
Ref. 9; +, boundary layers; O, present numerical channels.

of near-wall scaling must come from the interaction of near-
wall modes that scale in wall units with modes residing away
from the wall, for it is only in that way that the Reynolds
number is defined. The best-known proposal involves wall-
parallel large-scale modes that reach the wall without being
constrained by impermeability.10 It was suggested in Ref. 1,
on the basis of lower-Reynolds-number simulations, that the
important outer modes were global ones spanning the whole
channel and scaling with the boundary layer thickness, and
others have also described the near-wall spectrum in terms of
the superposition of “inner” and “outer” energy peaks.11 The
subject of most of the rest of this paper is the discussion of
whether the data sustain such “two-scale” models.

The behavior of the intensities in the logarithmic layer is
also included in Fig. 1(c), but it is less clear. There is a
general growing trend, also shared by the numerics, but
it could be argued that boundary layers saturate above
Re,~3000, and at least one experiment9 has concluded the
same for pipes. It is plotted separately for emphasis. The
subject has been discussed, for example, in Ref. 2, but, ex-
cept to present the additional data point in this figure, it will
not be further discussed here.

Two-dimensional (2D) spectral energy densities at the
height of the near-wall kinetic-energy maximum are shown
in Fig. 2. Two isolines are given for each case, representing
the high-intensity core of the spectrum, and its outer border.
They confirm the results of simulations at lower Reynolds
numbers.' The core isolines scale well in wall units. Because
the kinetic energy is the integral of the spectrum, this part of
the energy also scales in wall units. The scaling failure ap-
pears for u and w in the upper right-hand corner, where a
spectral ridge extends roughly along A,=0.15\,. The ridge
gets longer as the Reynolds number increases, reaching up to
N,=~10h in the case of ¢,,. The eddies in this ridge are
inactive in the sense of Townsend.'’ They are neither found
in the v spectrum, nor in the Reynolds stress cospectra in
Fig. 2(c).

The vertical structure of the eddies responsible for the
inactive ridge is shown in Fig. 3(a), which shows contours of
u'? integrated over logarithmic boxes of wavelengths cen-
tered along the ridge, with a fixed ratio between their longest
(widest) and shortest (narrowest) wavelengths [see Fig. 2(c)
for an example]. The energy at the shortest boxes is concen-
trated near the wall. They fall in the core part of the spec-
trum, and they correspond to the classical buffer-layer
streaks. It follows from Fig. 2(c) that these structures are
active and carry Reynolds shear stress. It was hypothesized
in Ref. 12, on the basis of lower Reynolds number simula-
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FIG. 2. Spectral energy densities ¢p=k,k.E(k,,k.) at y*=15, in terms of the
wavelengths N=2w/k. (a) ¢,,. (b) ¢, (c) Cospectrum —g,,. ——,
Re,=547; — —, 934; —, 2003. Spectra are normalized in wall units, and the
two contours for each spectrum are 0.125 and 0.625 times the maximum of
the spectrum for the highest Reynolds number. The heavy straight line is
N\,=0.15\,, and the heavy dots are \,=10A for the three cases. The dotted
rectangle in (c) is an example of the filtering boxes used to isolate the
energies in Fig. 3.

tions, that the streaks are intrinsically infinitely long but that
they are truncated by the action of outer layer turbulence.
This is now seen not to be the case. The “wall modes” have
a definite length of the order of 10* wall units, which is
independent of the Reynolds number. The ridge modes form
a continuum that links those inner structures with the ones
scaling in outer units. Figure 3(a) also contains a line joining
the position of the maxima of the individual filtered energy
profiles. The longer modes peak farther from the wall, and
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FIG. 3. Contour plots of the spectral energy summed over logarithmic boxes
of width o?, centered along \_=0.15\,, such as the one in Fig. 2(c), as a
function of y and of \, at the box center. Re,=2003. (a) Streamwise velocity
fluctuations. Contours are 0.04(0.04)0.32. (b) Shear stress cospectrum. Con-
tours are 0.01(0.01)0.06. In both case the solid lines with symbols are the y
positg)n of the maxima of the profiles in (a). O, A, as in Table I with
a=1\2; O, Re,=2003, a=2.

the locations of their peaks grow linearly as y..=~M\,/40
=\,/6. Note that the locations of the peaks are within the
nominal logarithmic layer and that they agree for the two
Reynolds numbers for which a comparison is possible. This
picture is sensitive to the path in the (A,—X\.) plane that is
used to generate it, but depends little on the size of the fil-
tering box. Figure 3 contains two lines of maxima computed
with boxes of different sizes. They agree almost exactly.

Even if the eddies along the spectral ridge are inactive
near the wall, the same is not true at the levels where their
intensities peak. That is seen in Fig. 3(b), which shows iso-
contours of the box-filtered Reynolds stress —u’v’. The ridge
modes become more intense and more active as they grow
taller, and they actually constitute the dominant modes
within the logarithmic layer. The highest contours in the
outer part of both Figs. 3(a) and 3(b) are comparable to the
corresponding intensities in the buffer layer at the core of the
u spectrum.

If we interpret A, as a width and y,,,, as a vertical semi-
axis, the cross sections of the eddies would be oblate ellipses
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with aspect ratios of 3:1. Because of the linear growth of
both quantities, the eddies can be visualized as conical. In
that interpretation, the inclination of their axes would be
arctan (1/40)=~1.5", although it is clear from Fig. 3(a) that
the eddies are not symmetric and that any identification
method based on integral quantities would result in some-
what higher angles. The inclination of the upper branches of
the isocontours in both figures is approximately 10°-12°,
which is of the order of the angles measured for the velocity
correlation in experimental boundary layers.13’14

In summary, we have presented a new simulation of a
turbulent channel containing an appreciable logarithmic
layer, at a Reynolds number higher than those currently
available. Several features in the logarithmic layer have been
shown to grow linearly with wall distance, as in the classical
scaling of the overlap region. The scaling failure of the in-
tensity at the near-wall kinetic-energy peak has been shown
to be the result of eddies conforming to Townsend’s inactive
model, restricted at that wall distance to a spectral ridge of
long and wide structures that are clearly distinguishable from
the near-wall streaks. The latter scale well in wall units. The
ridge modes are the near-wall footprints of eddies whose
maximum intensities lie in the logarithmic region, and they
link the near-wall streaks with the global modes identified
elsewhere. They are inactive at the wall, but they support
most of the Reynolds shear stresses at the location of their
peaks.
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