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A novel approach to the study of the kinematics and dynamics of turbulent flows
is presented. The method involves tracking in time coherent structures, and provides
all of the information required to characterize eddies from birth to death. Spatially
and temporally well-resolved DNSs of channel data at Reτ = 930–4200 are used to
analyse the evolution of three-dimensional sweeps, ejections (Lozano-Durán et al.,
J. Fluid Mech., vol. 694, 2012, pp. 100–130) and clusters of vortices (del Álamo
et al., J. Fluid Mech., vol. 561, 2006, pp. 329–358). The results show that most of
the eddies remain small and do not last for long times, but that some become large,
attach to the wall and extend across the logarithmic layer. The latter are geometrically
and temporally self-similar, with lifetimes proportional to their size (or distance from
the wall), and their dynamics is controlled by the mean shear near their centre of
gravity. They are responsible for most of the total momentum transfer. Their origin,
eventual disappearance, and history are investigated and characterized, including their
advection velocity at different wall distances and the temporal evolution of their
size. Reinforcing previous results, the symmetry found between sweeps and ejections
supports the idea that they are not independent structures, but different manifestations
of larger quasi-streamwise rollers in which they are embedded. Spatially localized
direct and inverse cascades are respectively associated with the splitting and merging
of individual structures, as in the models of Richardson (Proc. R. Soc. Lond. A,
vol. 97(686), 1920, pp. 354–373) or Obukhov (Izv. Akad. Nauk USSR, Ser. Geogr.
Geofiz., vol. 5(4), 1941, pp. 453–466). It is found that the direct cascade predominates,
but that both directions are roughly comparable. Most of the merged or split fragments
have sizes of the order of a few Kolmogorov viscous units, but a substantial fraction
of the growth and decay of the larger eddies is due to a self-similar inertial process
in which eddies merge and split in fragments spanning a wide range of scales.
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1. Introduction

The research on coherent structures in turbulence relies on the notion that there is
a set of eddies that are representative enough of the dynamics of the flow that their
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understanding would result in important insights into the mechanics of turbulence.
In recent years, the steady increase in computer power has allowed the study of
instantaneous three-dimensional coherent structures extracted from direct numerical
simulations (DNSs). However, their dynamics can only be fully understood by tracking
them in time. Although the temporal evolution of structures in wall-bounded flow has
already been studied for small eddies at moderate Reynolds numbers (e.g. Johansson,
Alfredsson & Kim 1991; Robinson 1991), a temporal analysis of the three-dimensional
structures spanning from the smallest to the largest scales across the logarithmic
layer, using non-marginal Reynolds numbers, had not been performed until recently
(Lozano-Durán & Jiménez 2010, 2011). The present work is a continuation of those
analyses. Our goal is to study the dynamics of turbulent channel flows in terms of
the time-resolved evolution of coherent structures, with particular emphasis on the
logarithmic layer. The results of our study will be presented in two parts, of which
the present paper is only the first. In it, we describe the tracking method, define the
three-dimensional eddies that are individually tracked, and characterize their temporal
evolution and interactions. A subsequent paper will describe the causal relations
between different kinds of eddies, and the temporal behaviour of their energy and
surrounding velocity flow field.

The efforts to describe wall-bounded turbulence in terms of coherent motions date
back at least to the work of Theodorsen (1952), but it was not until the experimental
visualization of sublayer streaks in boundary layers by Kline et al. (1967), of fluid
ejections by Corino & Brodkey (1969) and of large coherent structures in free-shear
layers by Brown & Roshko (1974), that the structural view of turbulence gained wider
acceptance. Quadrant analysis was proposed to study regions of intense tangential
Reynolds stress in wall-bounded turbulent flows by Wallace, Eckelmann & Brodkey
(1972) and by Willmarth & Lu (1972), and the related VITA (variable interval
time-averaged) technique of Blackwelder & Kaplan (1976) was used to identify
one-dimensional sections of individual structures from single-point temporal signals,
and to define and characterize ejections (Bogard & Tiederman 1986). Particle-image
velocimetry (PIV) experiments in the 1990s provided two-dimensional flow sections,
and linked the groups of ejections to ramp-like low-momentum regions (Adrian 1991,
2005). Simultaneously, the increase in computational power and the development
of new experimental techniques led to the study of full three-dimensional coherent
structures (Robinson 1991). Some recent works of this type are the characterization
of clusters of vortices in simulations by Moisy & Jiménez (2004), Tanahashi et al.
(2004) and del Álamo et al. (2006), the generalized three-dimensional quadrant
analysis in Lozano-Durán, Flores & Jiménez (2012), and the experiments of Dennis
& Nickels (2011a,b) among others. However, most of these studies are restricted to
instantaneous snapshots from which it is difficult to extract dynamical information.

The study of convection velocities is closely linked to that of coherent structures.
Kim & Hussain (1993) extracted the streamwise propagation speed of the fluctuations
of pressure and velocity in a numerical channel, and concluded that it is approximately
equal to the local mean velocity, except in the near-wall region, while Krogstad,
Kaspersen & Rimestad (1998) computed convection velocities in an experimental
turbulent boundary layer, and found that coherent motions of the order of the
boundary-layer thickness convect with the local mean velocity, but that the velocity
drops significantly for the smaller scales. Interestingly, del Álamo & Jiménez (2009)
found that the small scales in channels travel at approximately the local average
velocity, whereas larger ones travel at a more uniform speed roughly equal to
the bulk velocity. Since the bulk velocity may be larger or smaller than the local
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average depending on the distance to the wall, these three results are not necessarily
incompatible. The average convection velocity has also been found to depend on
the flow variable or structure under consideration. For instance, ejections travel at
distinctly lower speeds than sweeps (Guezennec, Piomelli & Kim 1989; Krogstad
et al. 1998).

The first attempts to measure the lifetimes of vortices date from the experiments
in grid turbulence by Cadot, Douady & Couder (1995) and Villermaux, Sixou &
Gagne (1995), although with limited results. The temporal evolution of the velocity
fluctuations in the logarithmic layer of turbulent channels was studied by Flores
& Jimenez (2010) using minimal boxes, resulting in a scenario that is a more
disorganized version of the one in the minimal simulations of the buffer layer
described by Jiménez & Moin (1991). The time-resolved evolution of individual
structures in a full-sized logarithmic layer was first studied by Lozano-Durán &
Jiménez (2010, 2011). Those works share some features with previous studies of
the dynamics of hairpin vortices, both numerical (Singer & Joslin 1994; Zhou et al.
1999; Suponitsky, Avital & Gaster 2005) and experimental (Acarlar & Smith 1987a,b;
Haidari & Smith 1994). However, while the older works describe the evolution of
individual hairpin-like vortices in a laminar flow, although in some cases with a
turbulent-like profile, Lozano-Durán & Jiménez (2010, 2011) and the present paper
deal with the evolution of actual eddies in fully developed turbulence.

Exploiting a different technique, Elsinga & Marusic (2010) studied the evolution of
the invariants of the velocity gradient tensor (Chong, Perry & Cantwell 1990; Perry &
Chong 1994; Martín et al. 1998) in the outer part of a turbulent boundary layer, using
a dataset of time-resolved three-dimensional velocity fields obtained by tomographic
PIV. They found a nearly constant orbital period of the order of tens of eddy turnovers
for the conditionally averaged spiral trajectories in the invariant-parameter plane, and
interpreted it as a characteristic lifetime of the energy-containing eddies. The same
dataset was later used by Elsinga et al. (2012) to track vortices in a turbulent
boundary layer, and to compute average trajectories and convection velocities. They
observed non-negligible wall-normal displacements of the structures during a typical
trajectory, and showed that the vortical structures and bulges are transported passively
by the external velocity field without significant changes in their topology. The recent
work of LeHew, Guala & McKeon (2013) also uses time-resolved PIV to examine the
structure and evolution of two-dimensional swirling motions in wall-parallel planes
of a turbulent boundary layer, which they take to be markers for three-dimensional
vortex structures. They measure their convection velocity and lifetime, and find that
the latter increases with the wall-normal distance, and that a small percentage of the
vortices survive for more than five eddy-turnover times.

These observations have been used to build models for the dynamics of wall-
bounded turbulence based on coherent structures. The best developed ones refer to
the flow near the wall, where the local Reynolds numbers are low, and the flow is
smooth enough to speak of simple objects. Examples include the papers by Jiménez
& Moin (1991), Jiménez & Pinelli (1999), Schoppa & Hussain (2002) and Kawahara,
Uhlmann & van Veen (2012), and the reviews by Panton (2001) and McKeon
& Sreenivasan (2007). Above the buffer layer, the internal Reynolds number of the
eddies is higher, the eddies are themselves turbulent objects, and their characterization
is more challenging. A seminal contribution was the attached-eddy model proposed
by Townsend (1961) for the logarithmic layer. Generally speaking, there are at
present two different models for the dynamical implementation of the Townsend
(1961) conceptual framework, both of them hitherto incomplete. The first is the
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hairpin-packet paradigm, originally proposed by Adrian, Meinhart & Tomkins (2000),
based on the horseshoe vortex initially described by Theodorsen (1952) and further
developed by Head & Bandyopadhyay (1981), Perry & Chong (1982) and others.
According to that model, several hairpin vortices are organized in coherent packets
that grow from the wall into the outer region, with lifetimes much longer than their
characteristic turnover times (Zhou et al. 1999). The growth of the packets involves
several mechanisms, including self-induction, autogeneration and mergers with other
packets, as discussed in Tomkins & Adrian (2003) and reviewed in Adrian (2007). The
observed low-momentum regions and ejections are contained within the hairpin packet,
and are reflections of the cooperative effect of the hairpins. However, the evidence
for hairpin vortices far from the wall is limited, and their origin and evolution remain
unclear, especially with regard to how they move away from the wall.

Other models have been proposed in which the importance of the hairpins is
questioned. Pirozzoli (2011) studied the organization of vortex tubes around shear
layers and concluded that the former are a by-product of the latter, most likely
through a Kelvin–Helmholtz instability. In the same line, Bernard (2013) found
vortex furrows to be the dominant structural entity in a transitional boundary layer
and the hairpins the rotational motion created as a consequence of the furrows.
Schlatter et al. (2014) showed that transitional hairpin vortices in fully developed
turbulent boundary layers do not persist and their dominant appearance in the outer
region at high Reynolds numbers is very unlikely. However, the three aforementioned
works focus on the buffer layer or their vicinity and do not provide any information
about the logarithmic layer and above. A more complete model has been proposed
by del Álamo et al. (2006), Flores, Jiménez & del Álamo (2007) and Lozano-Durán
et al. (2012), in which the flow in the logarithmic layer is explained in terms of
ejections, sweeps and clusters of vortices. Reviews are found in Jiménez (2012,
2013b). These structures are intrinsically turbulent and complex objects, in contrast
to the simpler hairpins. Ejections and sweeps are grouped into side-by-side parallel
pairs, mostly one-sided rather than symmetric trios (see also Guezennec et al. 1989),
and the predominant structure is formed by one such pair, with a vortex cluster
embedded within the base of the ejection, and extending underneath the sweep. They
are preferentially located in the side walls of, rather than surrounding, a low-velocity
streak lodged besides a taller high-velocity structure, in a configuration that most
probably corresponds to the low-momentum ramps discussed by various authors (e.g.
Adrian 1991, 2005). The presence of structures with almost identical features over
rough walls (Flores et al. 2007) and in channels without a buffer layer (Mizuno &
Jiménez 2013) suggests that they are generated at all heights, or that, if they are
formed at the wall, they quickly forget their origin and reach local equilibrium with
the outer layers. Either way, the importance of the wall as the source of eddies is
diminished, and is mostly relegated to the role of creating and maintaining the mean
shear.

From the kinematic point of view (ignoring the asymmetry reported above for
the ejection–sweep pairs), the hairpin packet model by Adrian et al. (2000) and the
scenario proposed by del Álamo et al. (2006), Flores et al. (2007) and Lozano-Durán
et al. (2012), are statistically compatible at the level of one-point velocity statistics
and spectra, as shown by Perry & Chong (1982), Perry, Henbest & Chong (1986) and
Nickels & Marusic (2001) for hairpin packets, and by del Álamo et al. (2006) for
vortex clusters. Beyond that, the two models are not dynamically equivalent and, while
the hairpins are seen as the cause of the low-momentum regions and of the ejections,
the clusters of vortices in del Álamo et al. (2006) are rather considered consequences
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of the streaks. The first part of this paper will be devoted to clarifying this issue by
the direct observation of the temporal evolution of the different structures.

The second part of the paper is devoted to the turbulent cascade. The
phenomenological explanation of the transfer of energy from large to small scales
was introduced in the classical paper by Kolmogorov (1941), but the concept of a
turbulent cascade in terms of interactions among eddies had been proposed earlier by
Richardson (1920) and later by Obukhov (1941). In the present work, we focus on
the geometrical Richardson–Obukhov model of local-in-space cascade as opposed to
the Kolmogorov local-in-scale one, and occasionally refer to the momentum cascade
as described by Jiménez (2012). Also, it will be shown that the most important
structures have sizes above the Corrsin scale and, hence, are influenced by the
injection of energy from the mean shear. As a consequence, these structures are
not intended to represent the isotropic energy transfer in the sense of Kolmogorov
(1941) but at most its first steps. There have been many attempts to reconcile the
two different views described above, and to unravel the physical mechanism behind
the cascade. In particular, it has been known for some time that the cascade is
not one-directional from large to small scales, but that there is a balance between
direct and inverse transfers. Most of the evidence for this backscatter originates from
filtering techniques in scale space (Piomelli et al. 1991; Aoyama et al. 2005). Again,
the physical details of the process remained unknown, and our goal will be to inquire
whether individual structures can be observed to break or merge in ways that can be
related to a cascade process.

The paper is organized as follows. Section 2 describes the numerical experiments
and the method employed to identify coherent structures. The tracking method
is explained in § 3. The temporal evolutions of eddies are classified according to
different criteria in § 4 and their geometry analysed. Their temporal behaviour is
described in § 5, their lifetimes in § 5.1, their birth, death and vertical evolution
in § 5.2 and § 5.3, and the advection velocities in § 5.4. Section 6 describes the
evidence for direct and inverse turbulent cascades in terms of coherent structures.
Finally, a discussion and conclusions are offered in § 7. Two appendices, provided
as supplementary material available at http://dx.doi.org/10.1017/jfm.2014.575, contain
additional information concerning the validation of the tracking procedure and the
effect of the parameters chosen.

2. Numerical experiments and identification of coherent structures
2.1. Numerical experiments

The parameters of the DNSs used for our analysis are summarized in table 1, and
are described in more detail by Lozano-Durán & Jiménez (2014). Briefly, the code
is similar to that of Kim, Moin & Moser (1987). The numerical discretization
is dealiased Fourier in the two wall-parallel directions, and either Chebychev or
seven-point compact finite differences in the wall-normal one. Throughout this paper,
u, v and w are streamwise, wall-normal and spanwise velocity fluctuations, measured
with respect to their mean, which is defined over the two homogeneous directions
and time. The streamwise and spanwise coordinates are x and z, and the wall-normal
coordinate, y, is zero at the wall. The only non-zero mean velocity is U(y) and primed
(φ′) variables denote root-mean-squared (r.m.s.) intensities. The channel half-height
is h, and ‘+’ superscripts denote wall units defined in terms of the friction velocity
uτ and of the kinematic viscosity ν. The Kármán number is Reτ = uτh/ν. We
define the global eddy-turnover time as h/uτ , and occasionally use a local turnover

http://dx.doi.org/10.1017/jfm.2014.575
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Case Reτ Reλ Lx/h Lz/h 1x+ 1z+ 1y+max Nx,Nz Ny 1t+s Tsuτ/h Symbol

M950 932 89 2π π 11 5.7 7.6 768 385 0.8 20 E
M2000 2009 126 2π π 12 6.1 8.9 1536 633 2.1 11 1
M4200 4164 202 2π π 12 6.1 10.6 3072 1081 3.5 10 None

TABLE 1. Parameters of the simulations. Here Reτ is the Kármán number. The microscale
Reynolds number Reλ is the maximum in each channel, attained in all cases near the
upper edge of the logarithmic layer, y/h≈ 0.4. Lx and Lz are the streamwise and spanwise
dimensions of the numerical box, and h is the channel half-height. We use 1x and 1z
to denote the streamwise and spanwise resolutions in terms of Fourier modes before
de-aliasing and 1ymax is the coarsest wall-normal resolution. Here Nx, Ny, Nz are the
number of collocation points in the three coordinate directions, 1ts is the average time
separation between the fields stored to compute coherent structures and Tsuτ/h is the
number of global eddy turnovers used in the analysis, after transients are discarded. The
symbols are used consistently in the figures, unless noted otherwise.

time y/uτ . The Kolmogorov length and time scales are η= (ν3/ε)1/4 and tη= (ν/ε)1/2,
respectively, where ε(y) is the mean dissipation rate of the kinetic energy. We often
classify results in terms of buffer, logarithmic and outer regions, arbitrarily defined as
y+ < 100, 100ν/uτ < y< 0.2h and y> 0.2h, respectively. It was checked that varying
those limits within the usual range did not significantly alter the results presented
below.

The Reynolds numbers chosen, Reτ = 932, 2009 and 4164, yield scale separations
of h/10η' 30, 60 and 100, respectively, if we assume that the largest structures are
O(h) and that the smallest ones are vortices with diameters of order 10η (Jiménez
et al. 1993; Jiménez & Wray 1998). The microscale Reynolds numbers in table 1 are
computed, assuming isotropy, as Reλ= q2√5/(3νε), where q2= u2+ v2+w2, and the
maximum is achieved in all cases near y/h = 0.4. All of the statistics are compiled
over at least 10 global eddy turnovers, which will be seen in § 5.1 to be long enough
with respect to the lifetimes of most coherent structures not to interference with their
description.

The analysis of the temporal evolution of the flow requires storing approximately
104 snapshots for each simulation, implying several hundred terabytes for each
channel in table 1. To keep the storage requirements under some control, the channel
dimensions are kept Lx= 2πh and Lz=πh. It was shown by Flores & Jimenez (2010)
that this box size is the minimum needed to accommodate the widest flow structures,
and Lozano-Durán & Jiménez (2014) showed that it results in correct one-point
statistics. Structures longer than 2πh exist in larger channels (Jiménez 1998; Kim &
Adrian 1999; Marusic 2001; del Álamo et al. 2004; Jiménez, del Álamo & Flores
2004; Guala, Hommema & Adrian 2006), and are represented in the numerics as
infinitely long, but it was argued by del Álamo et al. (2004) and Lozano-Durán
& Jiménez (2014) that their evolution times are slow enough for their interactions
with the smaller scales to be represented correctly even in that case. The result is
essentially healthy turbulence across the whole channel, although the behaviour of
the largest structures is probably unreliable. However, spectral analysis shows that
structures longer than 2πh are at least as tall as h (Hoyas & Jimenez 2006; Jiménez
2012), so that the results of our analysis should be correct for eddies approximately
restricted to the logarithmic and buffer layers. In fact, no structure has been discarded
from our analysis for being too large. The number of eddies constricted by the box



438 A. Lozano-Durán and J. Jiménez

size is too small to influence the statistics, and the only obvious difference between
our results and those in larger boxes is the ‘cap’ of very tall and long structures
found in the size distributions in figure 5 of Lozano-Durán et al. (2012), which is
much weaker in the equivalent distributions in figure 8(c,d) of the present paper.

2.2. Identification of coherent structures
In the present work, we understand by coherent structures those motions that are
organized in space and persistent in time and, although some distinctions are made
in the literature, we will use as synonymous coherent structures, objects and eddies.

We define structures as simply connected sets of points in which some property
exceeds a given threshold, with connectivity defined in terms of the six orthogonal
neighbours in the Cartesian mesh of the DNS. We study two types of structures:
the vortex clusters discussed by del Álamo et al. (2006) as surrogates for strong
dissipation and the ‘quadrant’ structures described by Lozano-Durán et al. (2012) as
responsible for the momentum transfer. Both have been shown to form well-defined
hierarchies in the logarithmic layer of channels, and it will be shown in § 5.1 that
they retain their individuality long enough to be considered coherent.

Vortex clusters are defined in terms of the discriminant of the velocity gradient
tensor, satisfying

D(x) > αD′(y), (2.1)

where D is the discriminant, D′(y) is its standard deviation and α= 0.02 is a threshold
obtained from a percolation analysis (Moisy & Jiménez 2004; del Álamo et al. 2006).

Quadrant events (Qs) are structures of particularly strong tangential Reynolds stress
that generalize to three dimensions the one-dimensional quadrant analysis of Lu &
Willmarth (1973). They satisfy

|u(x)v(x)|>Hu′(y)v′(y), (2.2)

where −u(x)v(x) is the instantaneous point-wise tangential Reynolds stress, and the
hyperbolic-hole size, H = 1.75, is also obtained from a percolation analysis (Lozano-
Durán et al. 2012).

Each object is circumscribed within a box aligned to the Cartesian axes, whose
streamwise and spanwise sizes are denoted by ∆x and ∆z. The minimum and
maximum distances of each object to the closest wall are ymin and ymax, and its
wall-normal size is ∆y = ymax − ymin. Both types of structures are classified as being
detached from the wall if y+min > 20, or attached to it if y+min < 20 (del Álamo et al.
2006; Lozano-Durán et al. 2012). Attached objects with y+max > 100 extend into the
logarithmic layer and are denoted as tall attached. They form self-similar families
with approximately constant geometric aspect ratios across the logarithmic layer,
although without a clearly defined shape (Jiménez 2012). Detached objects have sizes
that range from a few Kolmogorov lengths up to the integral scale. The largest ones
differ little from the tall attached objects (Jiménez 2013b), and we will see later that
they often become temporarily attached to the wall during their lives. However, most
of them are small and roughly isotropically oriented, with typical sizes of the order
of 15–20η in the three directions (del Álamo et al. 2006; Lozano-Durán et al. 2012),
and correspond to individual Kolmogorov-scale vortices.
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(a)

0

(b)

0

FIGURE 1. (Colour online) Coherent structures identified in a snapshot from case M4200.
The structures are coloured with their distance from the wall, and only the bottom half of
the channel is shown. Points close to the wall are lighter. (a) Vortex clusters. (b) Sweeps
(hot colours online) and ejections (cold).

The fraction of volume contained within vortex clusters depends strongly on the
threshold chosen, but is approximately 1 % of the total channel for the one used
here, decreasing slowly with increasing Reτ . Within this volume, clusters account for
approximately 10–15 % of the total enstrophy, which is similar to the values found by
Moisy & Jiménez (2004) in isotropic turbulence. Tall attached clusters are especially
relevant because, even if we will see in § 4 that they are a relatively small fraction
of the total, both by number and by volume, their bounding boxes fill a substantial
part of the channel (≈20 % by volume), and intercept a correspondingly large part of
the Reynolds stresses (del Álamo et al. 2006). They have ∆x ≈ 3∆y and ∆z ≈ 1.5∆y,
and are ‘sponges of worms’ whose elementary vortices have diameters of the order
of 7η. Figure 1(a) shows all of the vortex clusters in a snapshot from case M4200,
and figure 2(a) is a particular tall attached cluster extracted from it.
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FIGURE 2. (Colour online) Instantaneous structures identified from case M4200. Both of
them are attached to the wall and coloured with their distance to it. (a) Vortex cluster.
(b) Sweep.

Individual Qs are classified as belonging to different quadrants according to the
signs of their mean streamwise and wall-normal velocity fluctuations, computed as

um =

∫
Ω

u(x) d3x∫
Ω

d3x
, (2.3)

over the domain Ω of all their constituent points, where u(x) is the instantaneous
streamwise fluctuation velocity. A similar definition is used for vm, (uv)m, etc. As
in vortex clusters, Qs of each kind separate into wall-detached and wall-attached
families. The wall-attached Q−s (those with (uv)m < 0) are larger and carry most
of the mean tangential Reynolds stress. They only fill 6 % of the volume of the
channel, but are responsible for roughly 60 % of the total Reynolds stresses at all
wall distances. Most wall-attached events are sweeps (Q4s, with um > 0 and vm < 0)
or ejections (Q2s, with um < 0 and vm > 0), and form self-similar families with
aspect ratios ∆x ≈ 3∆y and ∆z ≈∆y. They agree well with the dimensions of the uv
cospectrum (Jiménez & Hoyas 2008; Lozano-Durán et al. 2012). Geometrically, they
are ‘sponges of flakes’ whose individual thickness are of the order of 12η. There
are very few tall attached ‘countergradient’ Q+s, with (uv)m > 0, and we will pay
little attention to them. Basically, the Reynolds stress carried by the detached Q+s is
compensated by the detached Q−s. Figure 1(b) shows all of the sweeps and ejections
in a snapshot from case M4200, and figure 2(b) shows a structure extracted from it.

Table 2 summarizes some of the results described above for tall attached structures.
Sweeps, ejections and vortex clusters are complex objects that are generally difficult
to appreciate from a single two-dimensional view. An interactive three-dimensional
view of a composite object incorporating the three kinds of structures can be
downloaded from the supplementary material of Lozano-Durán et al. (2012), and
a few more examples of individual structures can be found in our web page
http://torroja.dmt.upm.es/3Deddies.

3. Tracking method
3.1. Temporal sampling

Since the purpose of this paper is to analyse the time evolution of individual structures,
snapshots of each simulation are periodically stored every 1ts. The sampling intervals

http://torroja.dmt.upm.es/3Deddies
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Structure Sizes Shape Fractal Volume of fc (%)
dimension the channel

occupied (%)

Vortex cluster ∆x ≈ 3∆y ∆z ≈ 1.5∆y Sponges of worms 1.7 1 10–15
Attached Q−s ∆x ≈ 3∆y ∆z ≈∆y Sponges of flakes 2.0 6 60

TABLE 2. Summary of the main features of tall attached vortex clusters and Q−s. Here fc
is the fractional contribution to the enstrophy for vortex clusters or to the Reynolds stress
for Q−s. The fractal dimension is defined as in Lozano-Durán et al. (2012). See the text
for details.

for the different cases are given in table 1, and were chosen to be sufficiently short
to be able to track structures between consecutive snapshots. The sampling intervals
in table 1 increase with Reτ , but are always shorter than the Kolmogorov time scale,
which ranges from t+η ≈ 4 at y+ = 50 to approximately Re1/2

τ in the centre of the
channels. The effect of coarsening the sampling times is analysed in appendix B (see
the supplementary material), but it will be shown below that the values in table 1 are
short enough that only the smallest structures fail to be correctly tracked. To keep the
storage requirements reasonable, only M950 was stored in full for all of the snapshots,
so that the structure identification could be repeated if needed. This data set was used
to tune the identification and tracking methods, and the snapshots for the other two
cases only contain lists of points belonging to identified structures, although including
several thresholds to study the effect of the structure intensity. In addition, about 150
complete flow fields are stored for the two higher-Reynolds-number cases, and are
used to compute averages conditioned to the different structures. This procedure
decreases the storage requirement by approximately 95 %, and makes the analysis in
this paper possible.

Note that what is being studied here are naturally occurring structures in a fully
turbulent flow, rather than tripped structures in transitional or otherwise simplified flow
fields (Zhou et al. 1999; Wu & Moin 2010). In that sense, our results avoid some
of the artifacts of simpler situations and, for example, include all of the interactions
between different structures in their natural turbulent setting.

3.2. Steps of the tracking method
The tracking involves three stages.

(a) Connections between structures. All of the structures of a given type (i.e. either
Qs or clusters) from two consecutive snapshots are copied onto a common grid,
and the spatial overlaps between them are computed using the actual points of
the structures. All of the structures with some overlap are considered connected
(figure 3), and the operation is repeated for all of the consecutive time pairs.

(b) Organization into graphs. The result of the previous analysis is a set of
backwards and forward connections between structures in consecutive frames,
and needs to be processed further if the evolution of individual structures is
to be studied for longer times. An object in a given frame is considered to
have evolved without merging or splitting if it has exactly one backward and
one forward connection. As long as that remains true, such an object can be
unambiguously identified as an individual eddy. Structures with more that one
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(a) (b)

FIGURE 3. Sketch of the same coherent structure at two consecutive times. The picture
corresponds to x–y views of the channel and the flow goes from left to right. The sketch
in (a) shows one structure at time tn and the picture in (b) the same structure at time tn+1
in dark gray, and at time tn in light gray. The two structures overlap when copied onto a
common grid and thereby a connection is created between them.

backward connection are interpreted as having merged from several pre-existing
ones, and those with several forward connections are said to split (see figure 4a).
A first analysis of the data shows that mergers and splits happen often enough
that they cannot be ignored, and suggests the organization of the objects in
a temporal graph containing all of the structures in the data set and their
connections. Hence, all of the connected structures are organized into a very
large graph or supergraph in which the nodes are the instantaneous structures
and the edges are their temporal connections (figure 4b). This supergraph is
then partitioned into singly connected components, each of which contains the
evolution of all of the structures that interact with each other at some point
in their lives. For simplicity, each of those individual connected subgraphs will
be simply referred to as a ‘graph’. Note that the organization of the structures
into connected temporal graphs can be seen as a single clustering process in
space–time, in which two points are assigned to the same four-dimensional
cluster if they are contiguous in any of the three orthogonal spatial directions or
in the forward or backwards temporal ones.

(c) Organization into branches. Graphs are organized into ‘branches’, each of which
represents an individual structure. For that, each temporal connection is given
a weight 1V/Vi, where 1V is the volume difference between the structures in
its two end nodes, and Vi is the volume of their overlap. Special action is only
required for mergers and splits, which are defined as nodes with more than two
edges. In those with more that one incoming edge, the edge with the lowest
weight is defined as the primary incoming branch, while all of the others are
considered parts of branches that end (merge) at that moment. Similarly, in nodes
with more than one outgoing edge, the edge with the lowest weight is defined
as the primary outgoing branch, and all of the others give rise to newly created
branches that split at that moment. Roughly speaking, this algorithm continues
as a primary branch the objects whose volume changes less across the split or
merger.

A simple graph with three branches is sketched in figure 4(b), while figure 5(a) is
an actual example of the temporal evolution of several vortex clusters belonging to
the same graph. Figure 5(b) is the graph associated with that evolution, chosen as
an example of the complex interactions that may arise. Figure 5(c) shows an actual
branch classified as primary, tall attached and Q2 (see below and § 4). Table 3 shows
the number of identified structures, branches and graphs for Qs and vortex clusters.
Note that the numbers are in millions.
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(b)

(a)

FIGURE 4. (a) Sketch of two structures created from the turbulent background that merge
into a single one and eventually split into two fragments. (b) Graph associated with
the evolution shown in (a) and its organization into branches. The graph is formed by
three branches. The primary branch is continued throughout the largest object and new
secondary branches are created for the fragments split and merged.

(a)

(b)

(c)

FIGURE 5. (Colour online) (a) Example of the temporal evolution of several vortex
clusters belonging to the same graph for case M4200. The time goes from left to right. (b)
The associated graph. The horizontal solid lines are branches, and the vertical dashed ones,
mergers (red online) or splits (blue online). (c) Example of a primary branch extracted
from case M4200 and classified as a tall attached ejection. The flow (and time) goes from
left to right and the streamwise displacement of the structure has been shortened in order
to fit several stages of its lifetime in less space. The structure is coloured with the distance
from the wall. Note the different behaviours of its upper and near-wall components.

The tracking procedure in step (a) does not always succeed, especially for very
small structures. The main reason is that a structure may be advected between
snapshots by a distance larger than its length. To partly compensate for advection,
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Case Clusters Qs
Objects Branches Primaries Graphs Objects Branches Primaries Graphs

M950 185.7 6.6 2.8 1.9 107.8 3.2 1.3 1.8
M2000 397.8 19.4 8.8 6.2 294.7 18.6 11.0 9.4
M4200 799.2 45.8 19.7 36.9 889.5 64.1 35.3 32.6

TABLE 3. Number of identified structures, branches, primary branches, and graphs. All
numbers are in millions.

which is mostly due to the mean flow (Taylor 1938; Kim & Hussain 1993; Krogstad
et al. 1998; Jiménez 2013a), the structures at time tn+1 are shifted (and, hence,
deformed) by −U(y)1ts in the streamwise direction before their connections are
computed during the tracking. Even if this procedure allows us to track smaller
structures than would be possible otherwise, only those with lifetimes longer than
1ts can be captured, and structures much smaller that U(y)1ts may be occasionally
lost. For that reason, objects with sizes of the order of a few wall units may look
artificially isolated in time from the point of view of our method. Appendix A (see
the supplementary material) presents more details and several validation tests for the
tracking procedure, including for the shifting step just described, but some idea of
how many connections are being missed can be gained from the number of structures
that remain isolated after the tracking step, without any temporal connection. They
typically represent less than 1 % of the total number of structures, and are small
objects. In the case of clusters, where we have seen that the statistics are dominated
by the small-scale end of the size distribution, the average volume of the isolated
structures is 10–20 % of the average volume computed for all of the clusters. In the
case of the Qs, the volume of the isolated objects is even smaller, approximately 1 %
of the average.

3.3. Classification of branches according to their endpoints
Branches can be further classified according to how they are created and destroyed.
Sketches for the different cases are depicted in figure 6(a–d). When a branch is born
from the turbulent background (i.e. its first node has no backwards connections) and
ends in the same way (its last node has no forward connections), it is classified as
‘primary’ (figure 6a). Secondary branches may be ‘incoming’, if they are born from
scratch and end in a merger (figure 6b), ‘outgoing’ if they are born from a split
and end into the background (figure 6c), and ‘connectors’ if they go from a split
to a merger (figure 6d). Primary branches can be considered to represent the full
lives of individual structures, and will be our main interest in the following analysis.
Their number for the different cases have been incorporated into table 3. For Qs in
M4200, primaries represent 52 % of all branches, incoming branches represent 20 %,
outgoing ones 27 % and connectors 1 %. For the vortex clusters, primaries are 43 %,
incomings are 16 %, outgoings are 39 % and connectors are 2 %. The results for M950
and M2000 are qualitatively similar. Note that the unbalance between the number of
incoming and outgoing branches can be interpreted as a measure of the predominance
of the direct cascade towards smaller structures over the inverse one towards larger
ones. This point will be addressed in more detail in § 6.
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FIGURE 6. Classification of the branches attending to their beginning and end:
(a) primary; (b) incoming; (c) outgoing; (d) connectors.

4. Classification and geometry of branches
Graphs and branches can be classified in much the same way as instantaneous

structures. For example, we saw in § 2.2 that the structures that are attached to the
wall and tall enough to reach the logarithmic layer play an important role in the
dynamics of the flow. Branches are intended to represent the temporal evolution
of individual structures but, since eddies cannot be expected to remain attached or
detached during their whole evolution, we will classify a branch as attached if its
structure is attached to the wall at some point in its life. Similarly, a branch is
classified as tall attached if it contains at least a tall attached structure (y+max > 100);
detached branches are never attached to the wall; and buffer-layer ones spend all
of their lives within the buffer layer (y+max < 100). The same nomenclature applies
to graphs, even if each graph represents the evolution of a more complex group of
related structures.

Branches of Qs are assigned quadrants in the same way as individual structures.
It was shown in Lozano-Durán et al. (2012) that all of the points within a given Q-
structure belong to the same quadrant, essentially because moving from one quadrant
to another involves a discontinuous change in the velocity fluctuations that is unlikely
to occur between neighbouring points in a spatially well-resolved flow field. In the
same way, a discontinuous change in the quadrant of a structure is unlikely to happen
in a temporally resolved simulation, and branches and graphs retain their quadrant
classification over their evolution. In fact, no discontinuous change of quadrant was
found in any of the branches of our data base, even if no effort was made in the
tracking step to connect Qs with structures of the same quadrant.

To continue our study of branches we define their geometrical properties as
temporal averages over their constituent structures. Thus, the length lx of a branch is
taken to be the temporal average over the branch lifetime, 〈∆x〉B, of the length of the
single structure it tracks, and the same is true of its height ly and width lz. A similar
definition is used for the volume Vb of a branch, which is the temporal mean of the
volume of its constituent structure, and the height of its centre of gravity, which is
the temporal mean, yc, of the instantaneous centres, Yc = (ymin + ymax)/2.

Table 4 summarizes the fractional contribution of each kind of branch with respect
to all of the branches of its same type (i.e. Qs or clusters), expressed both in terms
of number of branches and of total volume. It is seen that most branches are small,
either detached or confined to the buffer layer, which is also true for individual
structures (del Álamo et al. 2006; Lozano-Durán et al. 2012). On the other hand,
the distribution of the volumes is different for clusters than for Qs. While 76 % of
the volume of the Q-branches is concentrated in tall attached sweeps and ejections,
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FIGURE 7. (Colour online) Probability density function of the height of the structures in
primary branches, ∆y, normalized with the mean height of their branch, ly: ——, detached;
– - – - –, buffer layer; - - - -, tall attached. Case M4200. (a) Q−s. (b) Vortex clusters.

By number By volume
Q2 Q4 Q+ Clusters Q2 Q4 Q+ Clusters

Buffer layer 0.167 0.161 0.177 0.509 0.023 0.026 0.055 0.323
Detached 0.169 0.148 0.175 0.471 0.034 0.050 0.053 0.490
Tall attached 0.002 0.001 0.000 0.021 0.476 0.284 0.016 0.188

TABLE 4. Fractional contribution of different types of branches, expressed both by number
and by volume. All the entries for clusters and for Qs sum to unity independently. The
most important contributions are highlighted in bold. Case M4200.

even if they represent less than 1 % of the total number, 81 % of the volume of
clusters is in relatively small detached or buffer-layer branches. This distribution
is consistent with the different spectra of the two quantities. While the small-scale
vorticity is dominated by Kolmogorov-scale vortices, momentum transfer is associated
with large-scale features of the order of the integral scale. Although compiled for a
single Reynolds number, table 4 is representative of the results for our three cases.

Average values taken over branches are relatively good representations of the
instantaneous structures. We will see below that the lifetime of a structure is roughly
proportional to its size, so that the most abundant small Qs and vortex clusters also
have relatively short lives. They emerge momentarily above the thresholding intensity,
and their properties change little before they disappear again. This is shown in
figure 7 by the probability density functions (p.d.f.s) of the heights of the individual
structures in a primary branch, normalized by the mean branch height. Both for Qs
and for clusters, the p.d.f.s for detached or buffer-layer branches are concentrated
around unity, and only those of the larger tall attached branches show a wider spread.
The easiest interpretation is that even large branches are necessarily created and
destroyed as small structures, and that their longer lives gives them the opportunity
to scan a wider range of sizes. There is relatively little skewness of the distributions
towards smaller or larger sizes, suggesting a relatively smooth size variation. This is
confirmed by the temporal evolution of the p.d.f.s of the dimensions of the structures
(not shown), which reveals that their lives are approximately evenly divided into
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FIGURE 8. (Colour online) Joint probability density functions of the logarithm of the
streamwise or spanwise average length of branches. Contours enclose 50 and 98 % of
the data. (a) Spanwise width of detached primary Q−s, as a function of the wall-normal
distance of their centre of gravity, yc. The dashed diagonal is lz= 15η(yc). ——, Ejections;
- - - -, sweeps. (b) As in (a), for detached vortex clusters. (c) Streamwise length of tall
attached primary Q−s, as a function of their wall-normal size, ly. The dashed diagonal
is lx = 2ly. ——, Ejections; - - - -, sweeps. (d) As in (c), for tall attached clusters. The
dashed-dotted line in all of the figures is the Corrsin scale lc(y)= (ε/S3)1/2 with y= ly/2
or y= yc, and S= ∂yU. Symbols as in table 1.

a relatively uniform initial growth, an intermediate constant phase and an equally
smooth final decay.

Figure 8(a,b) show the joint p.d.f.s of the spanwise size of the detached primary
branches and the height of their centre of gravity, yc. As mentioned in § 2.2, most
detached structures are small objects of the order of the Kolmogorov scale, and it
is significant that the average size of the branches follows the same trend, lz ≈ 15η,
mentioned in § 2.2 for individual objects. This agrees with the narrow p.d.f.s for the
detached branches in figure 7.

The joint p.d.f.s of the sizes of the tall attached primaries are given in figure 8(c,d).
Both the Q−s and the vortex clusters follow self-similar aspect ratios

lx ≈ 2ly and lz ≈ ly, (4.1)

although the latter is not shown in the figure. The streamwise aspect ratio is somewhat
lower than for individual tall structures, in which ∆x ≈ 3∆y (del Álamo et al. 2006;
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Lozano-Durán et al. 2012). That difference is consistent with the evidence in figure 7
that tall branches contain many smaller structures that bias their aspect ratio towards
isotropy. Since even large structures are roughly isotropic in the cross-stream plane,
∆z ≈ ∆y (del Álamo et al. 2006; Lozano-Durán et al. 2012), their spanwise aspect
ratio is maintained by the branches.

Note that the self-similarity of vortex clusters is less clear-cut than for the Qs.
In particular, while the maximum size of the Q− primaries scales in outer units,
and keeps growing with the Reynolds number when scaled in wall units, the vortex
clusters do not go beyond l+y ≈ 700. This was already noted by del Álamo et al.
(2006) and Lozano-Durán et al. (2012), who remarked that, although vortex clusters
tend to be associated with Q2s, they also tend to be restricted to their near-wall roots.

In the buffer layer (not shown), most of the branches are small, with sizes of the
order of the well-known quasi-streamwise vortices in that region, l+x ≈ 150 and l+z ≈ 80
(Kim et al. 1987; Robinson 1991).

The four panels of figure 8 include the length lc= (ε/S3)1/2, where S= ∂yU, which
was introduced by Corrsin (1958) as the size limit below which structures should not
feel the effect of shear and remain essentially isotropic. This was shown to be the
case for the Euv cospectrum by Saddoughi & Veeravali (1994) in a high-Reynolds-
number boundary layer, and for the velocity and vorticity isotropy tensors in several
shear flows by Jiménez (2013b). Figure 8 is probably the first time that the effect
is documented for individual structures. Small detached branches are approximately
isotropic because they have sizes of the order of, or below, the Corrsin scale, while
tall attached ones are elongated in the streamwise direction because they are larger
than lc.

5. Temporal evolution
5.1. Lifetimes

The lifetime, T , of a structure is the time elapsed between its first and last appearance
in a branch, but that definition is only unambiguous for graphs or for primary
branches. Secondary branches begin or end in splits or mergers, and it is unclear
whether their lifetimes should be continued into the branch from where they split or
into which they merge. In this section we will mostly concern ourselves with primary
branches. Figure 9(a) shows the relation between lifetimes and sizes of detached
primary sweeps and ejections, which scale well with the Kolmogorov times at the
height of their centres of gravity, T = 5tη(yc). This supports the interpretation that
they are essentially viscous structures with short lifetimes, although it is interesting
that there is, at all heights, a tail of longer lives suggesting enhanced coherence. It
was already noted by Jiménez (2013b) that there is a continuous transition between
large detached objects and coherent attached ones. Although figure 9(a) refers only
to Q−s, no significant differences are found between the lifetimes of detached Qs of
any kind, or of vortex clusters.

The Q−s in the buffer layer have lifetimes of T+ ≈ 30 (not shown), with extreme
cases in which T+ ≈ 400, comparable with the bursting period of the buffer layer
(Jiménez et al. 2005), and with the vortex decay times in that region, T+ ≈ 200
(Jiménez & Moin 1991; Jiménez & Pinelli 1999). The lifetime distributions for
buffer-layer clusters have similar tails, but many of them live very little, near the
temporal resolution limit of the present simulations.

Figure 9(b) shows that the lives of the tall attached Q−s are proportional to the
local eddy-turnover time, Tuτ/ly ≈ 1. This makes those branches self-similar not only
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FIGURE 9. (Colour online) (a) Probability density functions of the lifetimes of detached
Q− primaries as a function of the height of their mean centre of gravity, yc. Each
vertical section is a p.d.f., and contours are 50 and 98 % of the maximum at each height.
——, Ejections; - - - -, sweeps; – - – - –, T = 5tη(yc). (b) Probability density functions of
the lifetimes of tall attached Q− primaries, as a function of the mean branch height,
ly. Each vertical section is a p.d.f., and contours are 50 % of the maximum at each
height. The dashed straight line is T+ = l+y . r, lifetimes defined by the decay of the
frequency–wavenumber spectrum of v, as computed by del Álamo et al. (2006) for
Reτ = 550–2000; (×, p), bursting time scale in a minimal box for the range y/h =
0.1–0.3, at Reτ = 1880.p, from the temporal spectrum of the energy-production balance
(Flores & Jimenez 2010); ×, from the temporal autocorrelation of v2 (Jiménez 2013b).
(c) Probability density functions of the lifetimes of tall attached primaries, normalized
with the local eddy turnover. ——, Ejections; - - - -, sweeps; · · · · · · , clusters. The vertical
dashed line is Tuτ/ly = 1. (d) Number density per unit height, wall area and total time,
of objects belonging to tall attached Q− branches as a function of ∆y (solid), and of the
branches themselves, as a function of their height ly (dashed). The chain-dotted lines are
nob ∝∆−3.7

y and nbr ∝ l−4.7
y . Symbols as in table 1.

in space, but also in time. Estimates for the lifetime of the structures have been
reported before, and some of them are included in figure 9(b), for comparison. All
of them refer to the temporal evolution of some flow quantity as a function of the
wall distance, not to individual structures, and we have used the correspondence
y= ly/2. The two lines representing temporal correlations in minimal channels agree
relatively well with the present estimates, which is to be expected since they were
both computed from box-averaged data, which should represent the characteristics
of the largest structure present in those small boxes. The best agreement is with
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the line marked with crosses (Jiménez 2013b), which represents the width of the
temporal autocorrelation function of the box-averaged v2, and should thus be closest
to the lifetime of individual sweeps or ejections. All of the points in the line fall
within the levels selected for the p.d.f.s but with a lower slope. Since only three
points are available for the line, it is difficult to quantified the importance of such
difference. The solid squares were obtained from the temporal spectrum of the
integrated instantaneous energy balance, and are slightly longer than the present
results (3ly/uτ versus ly/uτ ), presumably reflecting the difference between the life
of a given structure and the average period between the generation of consecutive
ones (Flores & Jimenez 2010). On the other hand, the times represented by solid
triangles are shorter than the present estimates. They were obtained by del Álamo
et al. (2006) from the decorrelation time of the frequency–wavenumber spectrum of
v (Wills 1964), and thus include contributions from small scales that are bound to
decay faster than the larger attached structures. It was already noted by Flores &
Jimenez (2010), in discussing the same data, that the definition of lifetime depends
on the particular quantity being analysed and should only be taken as indicative. The
present lifetimes are shorter than the periods reported by Elsinga & Marusic (2010)
for the averaged orbits in the plane of Q–R invariants. These differences are not so
important if we take into account that the periods of the orbits and the lifetimes
presented here are computed using very different methods. In any case, the results
are comparable if our structures are not expected to live for a full revolution of the
orbit but just a fraction of it.

Other estimates are harder to compare. The increase of the lifetimes with the
distance from the wall was noted qualitatively by LeHew et al. (2013), who
tracked swirling structures with dimensions comparable with individual vortices in
wall-parallel sections of a relatively low-Reynolds-number boundary layer (Reτ = 410).
Their lifetime distributions are dominated by very short values that the authors
attribute to structures moving out of the observation plane. If they are disregarded,
their distributions have longer exponential tails whose decay rate imply average
lifetimes that increase from T+= 11 at y+= 33 to T+= 16 at y+= 200. Even though
those distributions include lifetimes up to 10 times longer than their means, these
values are quite shorter than ours, especially above the buffer layer. Our distributions
are also far from exponential, and the conclusion by LeHew et al. (2013) that the
lifetimes of the detached eddies are longer than those of the attached ones contradicts
the present ones. However, it should be stressed that LeHew et al. (2013) could only
distinguish attached from detached structures indirectly.

Note that, since the local mean shear in the logarithmic layer is S(y)≈ uτ/κy, where
κ is the von Kármán constant, the linear growth of the lifetime with the height of
the structures can be interpreted as ST ≈ 5, which is consistent with our interpretation
in figure 8 that tall branches are controlled by their interaction with the local shear
(Jiménez 2013b). If we take this to mean that the interaction with the wall is only
indirect, it would suggest that sweeps and ejections should be essentially mirror
images of one another. Figure 9(b) is an accumulated distribution for both types of
structures, but they are separated in figure 9(c), which reveals that the long end of
the two p.d.f.s is actually very similar, but that sweeps are somewhat more likely to
have short lifetimes than the ejections do. It turns out that this difference is restricted
to the neighbourhood of the buffer layer. Figure 9(d) shows that most attached
structures live near the wall, so that most of those classified as tall (y+max > 100)
barely exceed that height. We will see below that sweeps generally approach the
wall, while ejections move away from it, so that a sweep born near the top of the
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FIGURE 10. (Colour online) Sketch of the temporal evolution of a primary branch and the
wall-normal position of its birth and death, respectively yb and yd, and the time-dependent
maximum and minimum heights, ymax and ymin, of the instantaneous structure.

buffer layer tends to move near the wall and is dissipated by viscosity, while a
similar ejection tends to move away from the wall and survives longer. The short-end
tail of the p.d.f.s in figure 9(c) is due to this effect. When only taller branches are
considered, the difference between sweeps and ejections decreases, and it essentially
disappears for l+y > 200. Vortex clusters behave very similarly to ejections.

In addition to the distribution of the number of structures associated with tall
attached branches, figure 9(d) also shows the distribution of the number of branches
as a function of ly. It follows from the previous discussion that, if the number of
objects decays as nob ∼ ∆−n

y , and the lifetime of a branch is T ∼ ly, the number of
branches should decay like nbr ∼ l−(n+1)

y , because each branch contributes T objects
to nob. This estimate, which also assumes that the distribution of object sizes within
a branch is described by the single parameter ly, is tested in figure 9(d), and works
well. That figure also shows that the number density of branches and objects is
independent of the Reynolds number when expressed in consistent units.

As a final remark, the simulations presented here were run for at least 10h/uτ ,
whereas the longest lifetime identified for the structures in the logarithmic layer is five
times shorter, giving us some confidence on the statistical relevance of our results.

5.2. Birth and death, and vertical evolution
The distribution of branch births and deaths is interesting, even if only because there
are at least two competing models for the genesis of tall attached structures. They
differ mostly in their view of the importance of the wall. One view is that the buffer
layer is the source of attached coherent motions, from where they rise into the outer
region (Adrian et al. 2000; Christensen & Adrian 2000; Adrian 2007; Cimarelli, de
Angelis & Casciola 2013). A different view, with some support from the discussion
in the previous section, is that structures are controlled by the shear, and can be born
at any height. In this view, the wall is mainly a source of shear, and the structures
attach to it as part of the natural growth of eddies in any shear flow (Rogers & Moin
1987). Because the shear is strongest near the wall, that is also where most structures
are born and are strongest, but large structures would predominantly be expected to
arise farther away (del Álamo et al. 2006; Flores et al. 2007; Lozano-Durán et al.
2012). Figure 11(a,b) show the p.d.f.s of the height of the centres of primary Q−s at
the beginning and the end of their lives, classified as a function of the mean branch
height (see the sketch in figure 10). It turns out that Q2s are born in the buffer layer,
and rise, while Q4s are born away from the wall, and drop. Moreover, it appears that
ejections die and sweeps are born near their mean branch height, which for attached
branches is essentially ly ≈ 2yc.

The evolution of the maximum and minimum structure heights during the life of a
branch is given in figure 11(c,d). As we just saw, the Q2s are born attached to, or very
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FIGURE 11. (Colour online) (a,b,e) Probability density functions of the wall-normal height
of births, yb (——), and deaths, yd (- - - -), of tall attached primary branches, as a function
the mean height of their centre of gravity, yc. The dashed straight line is yb,d= 2yc. (c,d,f )
Probability density functions of the minimum (- - - -) and maximum (——) heights of tall
attached primary branches, as functions of the time elapsed from their birth. Time is
normalized with the lifetime of each branch, T , and ymin and ymax with the heights, yb
and yd, at its birth and death, respectively (see figure 10). The solid horizontal lines are
the average position of the wall. (a,c) Ejections. (b,d) Sweeps. (e, f ) Vortex clusters. In all
cases, each vertical section is a p.d.f., and the contours are 0.5 of its maximum. Symbols
as in table 1.

near, the wall. They remain attached for approximately 2
3 of their lives, after which

they detach and rise quickly. Their maximum height grows steadily during that time.
The evolution of the Q4s is the opposite. Their bottom moves down relatively quickly,
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FIGURE 12. (Colour online) Probability density functions of the wall-normal velocity of
the centre of gravity of the structures. The vertical lines are dyc/dt = ±uτ in (a) and
dyc/dt = 0 in (b). (a) ——, Ejections; - - - -, Sweeps. (b) Vortex clusters. Symbols as in
table 1.

attaches to the wall at roughly 1
3 of the branch live and stays attached thereafter. Their

top moves down steadily. The details of the distribution into attached and detached
behaviour change slightly when considering very tall branches, or those closer to the
buffer layer, but the overall behaviour is always just as described. Clusters behave
approximately as Q2s, although, as already mentioned, their range of heights is more
limited (figure 11e, f ).

The wall-normal velocity of the individual eddies is shown in figure 12(a,b), defined
from the vertical displacement of their centre of gravity between consecutive times
separated by 1t+ ≈ 30 (to avoid spatial and temporal resolution issues) during which
merging or splitting is not taking place. Consistent with the previous discussion,
ejections move upwards on average, and sweeps move towards the wall, and it is
interesting that both move within fairly narrow ranges of wall-normal velocities close
to ±uτ . This agrees with the results of Flores & Jimenez (2010), who noted that
strong sweeps and ejections in a small channel move across the logarithmic layer
with surprisingly constant velocities. Note that these velocities are also consistent
with a total vertical excursion of order ly (figure 11a,b) during a lifetime of order
ly/uτ (figure 9b). Vortex clusters have both positive and negative vertical velocities.
Apparently, although most clusters follow ejections as they rise, some of them also
move with the sweeps as they drop. The shapes of the velocity distributions do not
depend much on the attached or detached character of the structures being tracked,
although the velocities decrease somewhat in the buffer layer, as expected (not
shown).

It was speculated by Flores & Jimenez (2010) that bursts and ejections are parts
of a single underlying structure, because they tend to burst and ebb concurrently in
channels whose dimension has been adjusted to be minimal in the logarithmic layer,
and also because their symmetric vertical velocities suggest a common cause. It is
also known that they tend to occur in side-by-side pairs (Lozano-Durán et al. 2012)
and that the conditional mean flow field of such pairs is a large-scale streamwise
roller whose up- and down-welling edges contain the Q−s, both in the buffer layer
(Guezennec et al. 1989) and farther from the wall (Jiménez 2013b). The symmetry
of the distributions in figures 9(c) and 12(a) further supports that view.
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FIGURE 13. (Colour online) Sketch of the relative streamwise and spanwise distances of
births with respect to existing tall attached structures. Points (xc, zc) and (xb, zb) are the
wall-parallel coordinates of the centres of gravity of the existing and newborn structures,
respectively.

5.3. Relative position of branch creation
We next consider whether the birth of new tall attached branches is influenced by
pre-existent structures in their neighbourhood, such as would be the case, for example,
in the vortex-packet propagation mechanism proposed by Tomkins & Adrian (2003).
Note, however, that such an association would not necessarily imply causation, and
could rather be due to the presence of a larger undetected common structure, as
discussed above.

For that purpose, we look at the location with respect to existing structures of the
birth of branches that will eventually become tall attached. At each moment, a frame
of reference is defined at the centre of gravity of existing tall attached structures, and
the relative positions of births taking place at that moment are computed. Figure 13
sketches the procedure. The relative distances are defined as

δx = xb − xc√
∆2

x +∆2
z

, (5.1)

δz = zb − zc√
∆2

x +∆2
z

, (5.2)

where xc and zc are the coordinates of the centre of the existing structure, and xb and
zb the position of the newborn one. The distances are normalized with the length of
the x–z diagonal of the circumscribed box of the existing structure, and only births
between the wall and the maximum height of the existing structure are considered.

The resulting p.d.f.s are shown in figure 14(a–d). In all cases, the central part of
the p.d.f.s has a low probability of finding births, because that region is already
occupied by the existing structure. Figure 14(a,b) show that existing ejections
trigger new ejections ahead of themselves, while existing sweeps trigger new sweeps
predominantly behind. The p.d.f.s of the relative wall-normal position of births (not
shown) reveal that the new ejections tend to appear in the buffer layer (consistently
with figure 11(a)) whereas sweeps are born roughly at the same height as the
centre of gravity of the already existing ones. Figure 14(c) displays the birth of
sweeps with respect to existing ejections, and a symmetric figure can be drawn for
ejections with respect to sweeps. It shows that Qs of different quadrants are not
created aligned to each other, but side by side. Note that, in this case, the probability
map is oriented in such a way that the closest newborn structure is always to the
left (δz > 0) of the existing one. An un-oriented p.d.f. would show new structures
appearing symmetrically at both sides of the centre. Note also that, for that reason,
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FIGURE 14. (Colour online) Joint probability density functions of the relative streamwise,
δx, and spanwise, δz, distances of births with respect to existing tall attached structures
whose height is ∆+y > 200 (see sketch in figure 13). (a) New ejections with respect to
existing ejections. (b) New sweeps with respect to sweeps. (c) New sweeps with respect
to ejections. (d) New vortex clusters with respect to existing clusters. Contours are 1.2
(——) and 0.8 (- - - -) the probability in the far field. Symbols as in table 1.

the minimum birth probability of this case is not at the centre of the p.d.f. but to
its right (δz < 0). Births in that location have been transferred to the peak on the
left (δz > 0). Finally, figure 14(d) shows that vortex clusters are born downstream of
existing ones, as in the case of ejections.

The p.d.f.s in figure 14 are self-similar plots normalized with the size of the
‘parent’ structure, and therefore have no absolute dimensions associated with them.
If we consider them as reflecting a causal relation, they show that larger structures
influence regions farther from their centres than small ones do. The p.d.f.s in figure 14
are highly reminiscent of the p.d.f.s of the relative location of neighbouring structures
in figure 11 of Lozano-Durán et al. (2012), including similar distances between the
different peaks, suggesting that the geometric relations between existing structures
reflect their process of formation. We have already mentioned that Q2s and Q4s are
organized into streamwise trains of pairs each of which contains a Q2 and a Q4 side
by side, which can be interpreted to mean that sweeps and ejections are reflections of
quasi-streamwise large-scale rollers, embedded in the longer streaks of the streamwise
velocity; sweeps in the high-velocity side of the streak, and ejections in the low-speed
part. Figure 14(c) and its counterpart in Lozano-Durán et al. (2012) would then
reflect the spanwise separation between the high- and low-velocity component of
the streaks. The streamwise separation in figure 14(a,b) would correspond to the
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streamwise wavelength of the inhomogeneity of the streak, which is known to take
predominantly the form of meandering, both near the wall (Jiménez et al. 2004) and
in the logarithmic layer (Hutchins & Marusic 2007).

However, the front-to-back asymmetry in figure 14(a,d) provides additional
information beyond that contained in the relative position of the instantaneous
structures. It shows that trains of ejections and clusters grow streamwise by extending
downstream, but that sweeps grow towards their backs. This difference is difficult
to interpret, since it was shown by Lozano-Durán et al. (2012) that there are very
few unpaired Q−s in the channel, and the Q4s triggered behind the pre-existing
Q4 in figure 14(b) would eventually require the formation of new Q2s, and vice
versa. It is not clear from figure 14(a) where those Q2s are coming from. Some
possibilities suggest themselves, although they are unfortunately difficult to test
statistically. The simplest one is probably that the pairs are completed by untriggered
structures. The probability contours in figure 14 are only 20 % higher or lower than
the uniform background probability of finding a newborn structure anywhere, but it
is difficult to see why only one component of the organized pairs in figure 14(c), or
in Lozano-Durán et al. (2012), should be created randomly. A more likely possibility
is that the missing trailing Q2s are created too far from the origin to show in
figure 14(a). A plausible variant of that scenario starts by assuming that the triggering
Q2s and Q4s are always in the form of pairs. They would also trigger new pairs, but
only (or predominantly) with the opposite orientation to that of the existing one. A
triggering Q2 from 14(a) with a Q4 to its right would create ahead of itself a new
Q2 with a Q4 to its left, which would be too far from the existing Q4 to appear in
the conditional probability distribution in 14(b). A similar scenario would account for
the formation of a companion Q2 for the new Q4 in figure 14(b). Thus, a clockwise
quasi-streamwise roller, with the sweep to the right of the ejection (see figure 9
in Jiménez 2013b) would only trigger anticlockwise rollers ahead or behind itself.
This process would not be too different from the self-propagation of hairpin packets
in Tomkins & Adrian (2003), although it should be made clear that the objects
being discussed here live predominantly in the logarithmic layer, and that none of
the evidence in this paper, or in the companion one by Lozano-Durán et al. (2012),
suggests the presence of hairpins in that region. Note that the generation of rollers of
alternating sign along a streak leads naturally to the observed streak meandering. It
also agrees with the staggered-vortex models proposed by Schoppa & Hussain (2002)
for the buffer layer, and with the majority of the equilibrium and periodic exact
solutions more recently found in wall-bounded flows, and reviewed, for example, by
Kawahara et al. (2012).

5.4. Advection velocities
How structures deform during their evolution, and presumably what determines their
lifetime, is in part controlled by the vertical gradient of their advection velocity. It is
well-known that most flow variables advect roughly with the local mean streamwise
velocity (Kim & Hussain 1993; Krogstad et al. 1998), and are thus deformed by the
mean shear.

In this paper, the advection velocity of the wall-parallel sections of the structures
is measured in two independent ways. In the first, the set of points within the section
of the structure is correlated between consecutive times separated by 1t+ ≈ 10 (to
avoid grid resolution issues), and the velocity is estimated from the shift away from
the origin of the maximum correlation peak (Kuglin & Hines 1975; Sutton et al.
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FIGURE 15. (Colour online) Probability density functions of the streamwise advection
velocities of wall-parallel sections of the individual structures, as functions of their
wall-normal distances. (a) Phase velocity. ——, Q2s; - - - -, Q4s. (b) Phase velocity. Vortex
clusters. Symbols as in table 1. +, advection velocity of the swirling coherent structures
adapted from figure 10(b) of LeHew et al. (2013). (c) Phase velocity. Q2s in M4200.E,
all structures; ×, ∆+y > 400;@, ∆+y > 1000. (d) As in (c), but group velocity. In all panels,
each horizontal section is a p.d.f., and contours are 40 % of its maximum. The thicker
dashed line is the mean streamwise velocity profile for case M4200.

1983). This is the method typically used in PIV (Willert & Gharib 1991). The second
method tracks the centre of gravity of the circumscribing rectangle to the section of
the structure. Both velocities need not coincide if, for example, the structure moves
by accreting new elements from the front and shedding them from behind. The
difference is akin to the distinction of phase and group velocity in wavepackets, with
the correlation method representing the phase velocity. Non-dispersive structures in
which the phase and group velocities coincide can be considered as ‘coherent’ objects
advected by the flow, while dispersive ones are probably better understood as being
‘footprints’ continuously destroyed and reformed by some global influence, such as
pressure.

The results are shown in figure 15(a,b), which displays phase velocities from
snapshots not involved in mergers or splits. All structures move approximately with
the mean profile above the buffer layer. Ejections move slightly more slowly, roughly
by −1.5uτ , while sweeps move faster by roughly the same amount. This agrees with
previous results (Guezennec et al. 1989; Krogstad et al. 1998), and with the idea
that ejections live in low-velocity streaks, and sweeps in high-velocity streaks. Vortex
clusters can be either faster or slower than U(y), although the latter is slightly more
probable, presumably reflecting their preferential association with ejections. This was
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also seen in their vertical velocities in figure 12(b). Their mean advection velocity is
U(y) − 0.8uτ . Close to the wall, all structures advect roughly at 10uτ , in agreement
with Kim & Hussain (1993) and Krogstad et al. (1998). Figure 15(b) also includes
the p.d.f.s of the advection velocities reported by LeHew et al. (2013) which shows
shorter tails although reasonable considering the differences between both methods.
Elsinga et al. (2012) observed a mean advection velocity of 0.78Ue at y= 0.2h, with
Ue the free-stream velocity of the boundary layer, which also agrees with the value
of 0.776Uc obtained for vortex clusters at y= 0.2h in the present study, being Uc the
mean channel velocity at the centreline.

On the other hand, these results are not entirely consistent with those of del Álamo
& Jiménez (2009), who showed that large structures with wavelengths λx& 2h advect
at all heights with the bulk velocity of the mean profile, including near the wall,
where that velocity is very different from the local one. Their method computes a
phase velocity, and this dependence on the wavelength suggests that, at least for
large attached structures near the wall, turbulence should be dispersive. The same
conclusion could be drawn from the attached-eddy model of Townsend (1961), who
proposed that large structures near the wall are passive (‘inactive’), controlled by
active cores farther away from the wall. Bradshaw (1967) later showed that the
interaction between the outer active part and the inactive inner one was most likely
due to the pressure induced by the active cores. This was even more vividly shown
by Tuerke & Jiménez (2013) by means of a numerical experiment in which the
y-distribution of the total tangential stress in a channel was modified by a distribution
of volume forces. They expressed the average stress at a given distance from the
wall as a y-dependent friction velocity, uτ (y), and showed that, while the intensity of
the velocity fluctuation spectrum kxEuu(λx, y), where kx = 2π/λx, scale with u2

τ (y) for
relatively short wavelengths, λx ≈ y, the longer wavelengths scale everywhere much
better with u2

τ at the height of the active cores, y = λx/10. The suggestion in all of
these cases is that, while the smaller scales contained within the attached root of a
large structure may move approximately with the local mean velocity, the structure
itself should advect with a velocity closer to that of the active core near its centre of
gravity. For a graphic representation of this process, see the different behaviours of
the root and body of the structure in figure 5(c). Note that this observation reinforces
and refines the evidence for the modulation of the inner layer by the outer one
documented by Mathis, Hutchins & Marusic (2009).

This is confirmed in figure 15(c,d), which show the advection velocity separately
for structures of three different size ranges. Figure 15(c), shows the phase velocity as
a function of y. All of the size ranges agree, showing that the motion of the small
scales traced by the correlation method is indeed independent of the size of their ‘host’
structure. On the other hand, the group velocities in 15(d), computed by tracking the
circumscribing box, depend on the structure size. All of the structures travel with the
mean velocity for y+&∆y/4, but they decouple from the mean flow below that level,
and move with what can be interpreted as the advection velocity of the base of the
active part of the structure. Note that, since both the shear time, (∂yU)−1 ∼ κy/uτ ,
and the local eddy-turnover time, y/uτ , decrease as we approach the wall, such a
decoupling between the top and bottom parts of the attached structures, with very
different local time scales, should probably have been expected.

The conclusion that only the upper part of the tall attached structures can be
considered as coherent is interesting, because the lifetime of a structure is most
probably limited by its deformation by the shear. Whenever a structure is sheared by
much more than its length, it should disappear as a coherent object. The difference



Time-resolved evolution of coherent structures in turbulent channels 459

between the phase velocities at the top and bottom of an attached structure is
approximately 1U≈ uτκ−1 log∆+y , which would shear it by an amount roughly equal
to its length in a time of the order of ∆x/1U∼∆x/(uτ log∆+y ). This estimate differs
from the data in § 5.1 by the non-trivial logarithmic denominator. On the other hand,
if the only deformation that counts is that between y = ∆y and y = ∆y/4, or some
other constant factor, the shear time would be proportional to (∆x/uτ ) log 4, which
agrees better with the observations.

6. Secondary branches and graphs
6.1. Graphs

The discussion in the previous sections deals mostly with primary branches. Here
we describe the behaviour of the secondary branches that interact with them. The
underlying goal is to describe, if possible, the inertial cascade as a spatially localized
process in which individual eddies merge and split, as implied in the original
descriptions by Richardson (1920) and Obukhov (1941), rather than simply as the
conceptual scale-by-scale model introduced by Kolmogorov (1941). Our tool will be
the identification of such interactions within the organization of the structures into
branches and graphs.

As discussed in § 4, graphs are collections of branches that interact with each other
at some point in their life. It is difficult to define unique descriptors for the geometry
of the graphs, which can be quite complex objects (see figure 5a,b), but they can be
classified in the same way as branches. For example, a graph is tall attached if that
is the case for at least one of the structures in one of its branches. For the same
reasons as in the case of structures and branches, graphs can be given a unique type.
For example, a Q2 graph is exclusively formed by Q2 structures, and there are no
mixed graphs.

Figure 16 shows the normalized histogram of the number of branches per graph,
and gives an idea of their complexity. The mode of the histogram is located at one
branch per graph, but these cases correspond to simple small structures that evolve
without splitting or merging. On the other hand, the tails of the histograms include
large graphs with thousands of branches which represent groups of eddies (either Qs
or clusters) that merge and split often, as in the example in figure 5(a).

Graphs are mostly made of primary, incoming and outgoing branches, with very
few connectors (see the classification in figure 6 and the discussion in § 3). When
incoming and outgoing branches are considered, the results obtained in previous
sections are little affected for detached and buffer-layer branches, but those for tall
attached ones change. Roughly 60–70 % of the tall attached branches are secondary
(either incoming or outgoing). Their evolutions are truncated versions of the tall
attached primaries, with lifetimes biased towards shorter values and of the order of
ly/(2uτ ), which is half of that obtained for primaries. Their minimum and maximum
wall distances (not shown) behave like those presented for primary branches in
figure 11(c,d, f ) but only until they interact (merge or split) with a primary. Hence, the
equivalent plots for incoming branches are similar to the first half of figure 11(c,d, f )
from t/T = 0 (when they are born) to t/T ≈ 0.5 (when they merge with a primary),
whereas the plots for outgoing branches resemble the second half, from t/T ≈ 0.5
(when they split from a primary) to t/T = 1 (when they die).

6.2. Cascades
Figure 17 contains sketches of the two basic interactions among branches, and defines
the notation for this section. Each elementary interaction involves three objects. Two
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FIGURE 16. (Colour online) Probability density functions of the number of branches per
graph. Open symbols for Q−s and closed ones for vortex clusters. Symbols as in table 1
with squares for case M4200. The dashed line is proportional to N−3.
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FIGURE 17. (Colour online) Sketch of the process of: (a) split or direct cascade and
(b) merge or inverse cascade. The structures labelled as b (big) and m (medium) belong
to the same branch, and that denoted by s (small) is the fragment that has split or merged.

of them, b for big and m for medium, are part of the main branch involved in the
interaction, while the third (s for small) is the fragment being lost or gained. Thus, in
the split in figure 17(a), a structure of characteristic size ∆b breaks into a fragment
of size ∆m, which continues the branch, and loses a fragment of size ∆s. We will
call this interaction a direct cascade event. Similarly, in the inverse cascade event in
figure 17(b), two structures of sizes ∆m and ∆s merge into a single one of size ∆b.
In both cases, the notation is (b)
 (s)+ (m). Usually, but not always, ∆b >∆m >∆s.
Note that the sketches in figure 17 depict the merger or split of a single structure at
a given moment, but that it is fairly common to find several mergers or splits, or a
mixture of them, coinciding in a single event.

For the purpose of characterizing interactions, we use as eddy size the length, ∆,
of the three-dimensional diagonal of its circumscribing box, which is, on average,
1.3 times larger than the streamwise length. This choice was preferred instead of
other lengths based on the volume of the structures due to their complicated shapes
(see, for example, figure 2). For that reason, the split of a structure in two fragments
with similar characteristic lengths as defined above do not necessarily imply similar
volumes. The length ∆ can be generalized to branches by averaging over the branch
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FIGURE 18. (Colour online) (a) Fraction, f , of the number of primary clusters branches
that split (——) or merge (- - - -) at least once in their lives, as a function of the mean
diagonal length of the branch, l. The buffer layer branches are excluded. The vertical
dashed lines are l = 30η and l = 100η. Symbols as in table 1. (b) Ratio between the
volume of direct and inverse cascade as a function of the Reynolds number. �, Q−s;×,
vortex clusters.

life, l= 〈∆〉B, as in § 4. When normalizing it with the Kolmogorov scale, we use the
channel average at the height of the centre of gravity of the branch.

Also, since very few differences were found in the cascade statistics of sweeps and
ejections, they are treated together for the rest of this section.

We analyse first the prevalence of interactions. Figure 18(a) shows the fraction of
primary vortex-cluster branches that split or merge at least once in their lives, as a
function of their mean diagonal length. There is a minimum size, l ≈ 30η, roughly
agreeing with the peak of the energy-dissipation spectrum at λx ≈ 40η (Jiménez
2012), below which branches rarely merge or split. In this range, the cascade is
presumably inhibited by viscosity, and graphs contain a single branch that evolves
without splitting or merging. On the other hand, almost all of the branches larger than
l≈ 100η, most of which are tall attached, merge or split at least once. In the transition
between these two limits, the direct cascade predominates, and some branches split
but never merge. Similar results are obtained for Q−s (not shown), although with
less-pronounced differences between the direct and the inverse cascades. The buffer
layer branches are excluded from the figure 18(a). They cascade very little and, when
they are included in the figure, the cascading fractions increase more slowly and the
curves move to the right, reaching unity at l≈ 180η.

Next, we characterize the part of the growth and decay of the structures that is due
to mergers and splits, which can be interpreted as a measure of the contribution of
the inverse and direct cascades to the eddy evolution. To do that, we compare the
total volume gained or lost by primary branches in their cascade interactions with the
average volume of the branch, Vb. For example, the total lost volume (direct cascade),∑

B Vsd, is defined as the sum of the volumes of all of the fragments lost during the
life of the branch, with a similar definition for the volume gained,

∑
B Vsi. Excluding

the buffer layer branches, Q primaries with l > 100η have on average
∑

B Vsd/Vb ≈
0.72 and

∑
B Vsi/Vb ≈ 0.50 for case M4200. For vortex clusters, the ratios are on

average 1.41 and 0.73. In both cases mergers and splits are substantial contributors to
the eddy growth and decay.
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FIGURE 19. (Colour online) (a) Volume ratio between the direct and inverse cascades,
as a function of the sizes of the smallest and largest fragments in a given interaction.
Vortex clusters in M4200. The dashed line is ∆s = 0.4∆b. Contours are, from dark to
light, 3.5, 3, 2.5, 2 and 1.2. (b) Probability density functions of the sizes of the fragments
merged (- - - -) or split (——), ∆s, for different lengths of the larger eddy involved, ∆b/η=
0–200, 200–500, 500–2000. Data for vortex clusters. The vertical dashed line is ∆s= 30η.
Symbols as in table 1.

The ratio

rB =

∑
B

Vsd∑
B

Vsi

, (6.1)

gives an idea of which of the two cascades dominates in a given branch. Its average,
〈rB〉, is plotted in figure 18(b) for different Reynolds numbers and branch types. The
direct cascade always dominates, especially for vortex clusters, and its dominance
increases slightly with the Reynolds number. However, the imbalance is not huge,
approximately 1.3 for Q−s and 2.2 for vortex clusters, implying that the inverse
cascade is not negligible, in accordance with the backscatter observations of Piomelli
et al. (1991) and others.

To understand better how this imbalance is distributed as a function of scale, we
decompose the ratio rB in terms of the size of the fragments involved, r. Figure 19(a)
shows the ratio r(∆s, ∆b), defined as in (6.1) but restricting the sums and the
subsequent averaging to interactions involving a smallest and largest eddy of those
sizes. The figure refers to vortex clusters in case M4200, but qualitatively similar
ones are obtained for Q−s and for vortex clusters at different Reynolds numbers.

The direct cascade always prevails, but the imbalance is strongest along a ridge
∆s≈ 0.4∆b, which corresponds to eddies splitting roughly in halves, or merging with
others of similar size. It is also strongest for small structures below ∆b≈ 60η, which
tend to split in fragments of ∆s ≈ 20η much more frequently than they merge. This
ridge can be interpreted as the preferred locus of a predominantly direct cascade, but
note again that the imbalance for inertial structures is at most a factor of two, and that
the cascade only really becomes unidirectional when one of the fragments is small
enough to be dissipated by viscosity.

Figure 19(b) studies in more detail the merging or splitting process by presenting
the p.d.f.s of the size of the smallest structure involved in an interaction for different
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FIGURE 20. (Colour online) (a) Average time, TI , for a Q− to merge with, or split into,
two fragments of similar size (|∆m −∆s|/∆m < 0.1), plotted against ∆m for mergers and
∆b for splits. ——, splitting; - - - -, merging. The dashed-dotted line is T+I =0.35∆+m,b. Data
for primary branches. (b) Probability density functions of the time at which mergers and
splits take place, normalized with the branch lifetime. ——, splits, - - - -, mergers. Primary
tall attached Q−s. Symbols as in table 1.

ranges of the size of largest one. Most of the fragments are of the order of ∆s≈ 30η,
corresponding to viscous fragments torn from larger eddies or merging into them.
However, the tails of the p.d.f.s get longer as the largest structure gets bigger,
representing inertial interactions between eddies of comparable sizes. Further analysis
of the data (not shown) confirms this trend, and reveals that the size of the largest
fragment likely to merge into, or split from, an eddy of size ∆b is some fixed fraction
of ∆b. Note that the p.d.f.s in figure 19(b) are almost identical for mergers and splits,
and that the previous discussion applies equally well for the direct as for the inverse
cascade.

The temporal behaviour of the two cascades is studied in figure 20. Figure 20(a)
shows the average time, TI , elapsed before a Q− of size ∆b splits into two similar
fragments, or a Q− of size ∆m merges with another one of similar size (in both cases
defined as |∆m − ∆s| < 0.1∆m). This time may be interpreted as characterizing the
inertial cascade and it is defined as the time elapsed between the birth of a primary
and its first roughly symmetrical split or merger at sizes ∆b or ∆m, respectively. In
the case of several such events in a single branch, we consider TI as the time between
two consecutive inertial interactions, with the sizes ∆b and ∆m belonging to the last
one. The results show that T+I ≈ 0.35∆+m,b for both merging and splitting, and a further
analysis reveals that primaries with l> 100η undergo two or three inertial events in
its life, counting mergers and splits. In general, if we count any interaction regardless
of its size, the average number of splits (or mergers) in a branch is n ≈ 10−4(l/η)2
for primaries with l> 100η and excluding the buffer layer branches.

Figure 20(b) shows that mergers and splits are asymmetrically distributed during the
life of the branch. While splits happen at the end of the life, and contribute to tear the
structure apart, mergers take place at the beginning and enhance the early stages of
the growth of the eddy. While the figure is drawn for Q−s, similar results are obtained
for vortex clusters.

Finally, the spatial organization of mergers and splits is studied in figure 22 by
looking at the relative position of the centre of gravity of the smallest fragment
with respect to the intermediate one (see the sketch in figure 21). Figure 22(a,b)
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FIGURE 21. (Colour online) Sketch of the relative position of the centre of gravity of
fragments merged or split (structure s) with respect to the centre of gravity of the medium
eddy (structure m).
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FIGURE 22. (Colour online) Joint probability density functions of the relative wall-normal
and streamwise distances of the centres of mergers and splits (structures s) with respect
to the centre of the medium eddy (structure m) normalized with the characteristic size
of the latter, lm. See the sketch in figure 21. Contours are 20 and 90 % of the data. (a)
Splits for Q−s. (b) Mergers for Q−s. (c) Splits for vortex clusters. (d) Mergers for vortex
clusters. Symbols as in table 1.

show results for Q−s. Most of the mergers and splits take place in the streamwise
direction. The structures merge predominantly with fragments below and ahead of
them, presumably because taller and faster structures overtake smaller ones. The splits
occur mostly in the tail of the structure or in its upper-front head. Since we saw in
§ 5.4 that tall attached Q−s are tilted forward by the shear, this distribution of splits
seem to reflect the occasional tearing of their heads and tails during that process.
The results for vortex clusters are not as interesting (figure 22c,d). Most of their
interactions take place near the core of the original structure. The reason is probably
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that vortex clusters are much ‘emptier’ than Q−s (see figure 2, and Lozano-Durán
et al. 2012), and there is enough space within them for mergers and splits to happen
internally.

With respect to the nature of the participants in an interaction, tall attached
structures split 68 % of the time into another tall attached structure and either a
detached or a short attached one. In 25 % of the interactions, neither of the resultant
structures is tall attached, while only in 7 % of the cases both of them are. Similar
results are obtained for mergers and vortex clusters at different Reynolds numbers in
this respect.

Taking the evidence in this section at face value, it is difficult not to think of the
classical interpretation of the cascade by Leith (1967) or Orszag (1970), according to
which the inertial energy transfer is an entropy-driven random process in phase space,
in which energy tends to equipartition while drifting either up or down in scale (see
the discussion in Lesieur 1991, pp. 295–305). It is only when viscosity breaks the
energy conservation at the smallest scales that the energy is unidirectionally drained
into heat. However, there are two important caveats.

The first was already mentioned in the introduction. It should be clearly understood
that most of the results in this section refer to the large scales in which energy is
being fed into any possible inertial cascade. This should be clear from their association
with the tangential Reynolds stress, and from the observation in figure 8 that the
attached structures are larger that the Corrsin scale, and therefore directly coupled
with the mean shear. As such, although the cascade process described in this section
is probably a good description of how the momentum transfer changes scale across
the logarithmic layer, it may not be representative of the behaviour of the, presumably
universal, Kolmogorov (1941) inertial energy cascade.

In the second place, the description of a structure gaining fragments from its
front (or back) while shedding them from the other end, could be interpreted as
the definition of a dispersive wavepacket, and it was shown in § 5.4 that the bottom
part of the attached structures is dispersive. To test whether this could be a simpler
interpretation of the ‘reversible’ cascade described here, the objects from case M2000
were recomputed and tracked again after discarding all the planes for which y+< 100.
It follows from figure 15(d) that structures above that level are mostly non-dispersive.
The results in this section were then recalculated. The new structures were indeed
different from those including the buffer layer. For example, the average structure
size decreased somewhat, reflecting the loss of connectivity through the buffer layer,
but no qualitative differences were found for the cascade statistics described here.

7. Discussion and conclusions
We have presented a novel approach to the study of the kinematics and dynamics of

wall-bounded turbulent flows, and applied it to temporally and spatially well-resolved
simulations of turbulent channels in the range of Reynolds numbers Reτ = 930–4200.
The fields were stored often enough, and the simulated time was long enough, for
several millions of structures to be individually tracked from birth to death. Two
types of structures were analysed, vortex clusters (del Álamo et al. 2006) and the
quadrant structures of the tangential Reynolds stress (Lozano-Durán et al. 2012).
Although it was found that most structures of both types stay small and live short
lives, special emphasis was put on the tall attached sweeps and ejections with longer
lifetimes stretching from the wall into the logarithmic layer. In agreement with
previous investigators, those structures were found to carry most of the wall-normal
momentum transfer.
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The tracking procedure resulted in the organization of the structures into primary
branches, representing the evolution of a single structure from birth to death, and
a complicated set of secondary branches that either merge into or split from them.
Primary tall attached structures were shown to be geometrically self-similar, with
roughly constant aspect ratios for branches taller than l+y > 100–200, and equally
self-similar lifetimes, T+≈ l+y . This was true for sweeps, ejections and vortex clusters,
and it is striking that branches of sweeps and ejections were found to be essentially
mirror images of each other. Both have essentially identical lifetimes, and their
vertical advection velocities are antisymmetric: +uτ for the ejections and −uτ for
the sweeps. Moreover, ejections are born near the wall and rise until they disappear
near their maximum height, and sweeps are born away from the wall and move
towards it. This, together with the observation by previous investigators that sweeps
and ejections are typically found in side-by-side pairs (Lozano-Durán et al. 2012),
strongly suggests that both structures are manifestations of a single quasi-streamwise
roller lying between them, whose height does not change much during its evolution.
Vortex clusters, which are typically found between sweeps and ejections, tend to
follow the ejections, and are probably partial manifestations of the roller. Tall attached
sweeps and ejections are found more often in the high-shear region near the wall,
but they appear often enough at all heights for the largest structures to be responsible
for most of the momentum transfer. Several observations were shown to imply that
the largest structures at each height are large enough to be controlled by the shear,
and their antisymmetry suggests that they are not necessarily created near the wall,
but are rather a general consequence of the mean shear itself. On the other hand,
detached structures are much smaller than the tall attached ones and have sizes and
lifetimes of the order of the local Kolmogorov scales.

It was found that new structures form predominantly ahead or behind structures of
the same kind, but the details of that process were found to be difficult to reconcile
with the rest of the available evidence unless sweeps and ejections were again
considered part of side-by-side pairs that trigger new pairs of opposite polarity. A
clockwise roller would thus follow a counterclockwise one, and vice versa. Although
our study deals mostly with large structures in the logarithmic and outer layers, the
resulting model of alternating vortices flanking a streak agrees qualitatively with
older ones of the buffer layer, and with transitional exact structures at much lower
Reynolds numbers.

The streamwise advection velocity of individual structures was measured, and found
to depend on the distance to the wall, implying that the structures are deformed
enough by the mean shear that their lifetime is controlled by that deformation. It was
moreover found that their group and phase velocities only coincide in the top part of
the tall attached structures (y>∆y/4). This is the only part of the structure that can
be considered coherent. The ‘root’ below that height is dispersive, and is probably
just the ‘pressure shadow’ of the upper core. New small structures in that region are
either created or accreted at the front of the structure and shed from behind. This was
interpreted to be the individual-structure counterpart of the classical active–inactive
organization proposed by Townsend (1961). We have noted that restricting coherence
to the upper part of the attached structures also makes their observed lifetimes
consistent with a model in which they are created and eventually destroyed by their
deformation by the mean velocity profile.

It was found that the interactions (merging and splitting) among branches constitute
a substantial part of their evolution, and could not be neglected. We have analysed
them as indicators of a cascade of the quantities carried by the structures involved;
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in this case, the wall-normal momentum transfer by the sweeps and ejections, and
the enstrophy by the vortex clusters, even if the latter quantity is not conserved as
is the former. Following the geometrical model proposed by Richardson (1920) and
Obukhov (1941) in which cascading structures are related locally in space, mergers
were taken to indicate an inverse cascade, from smaller to larger sizes, and splits to
represent a direct one, from large to small. This process that does not necessarily
coincide with the energy cascade proposed by Kolmogorov (1941), which is local in
scale space. The resulting picture is more complex than a simple direct cascade of
large eddies into small ones. Eddies smaller than approximately 30η were found to
cascade only rarely, while those larger than 100η almost always do. In those cases,
the total volume gained and lost was found to be a substantial fraction of the total
volume of the large structures. Most branch interactions were found to be the shedding
or absorption of Kolmogorov-scale fragments by larger structures, but more balanced
splits or mergers spanning a wide range of scales were also found to be important. Not
surprisingly, mergers are more common during the initial growth part of the evolution
of the structures, while splits predominate later in their life, but the contributions from
both directions of the cascade are surprisingly balanced. Only those involving small
viscous fragments can be described as essentially unidirectional (direct). A typical
large attached eddy cascades into comparable fragments two or three times during its
life.

The location of the mergers and splits with respect to the largest eddy involved
in the interaction was also investigated. Large attached momentum structures, which
can be roughly described as forward-leaning, add fragments from below, probably by
overtaking them, and lose them from their upper head and their lower back, probably
by shearing. Clusters, which are more disorganized, and with an emptier interior space,
tend to cascade from the inside. These behaviours persist even when the buffer layer
is discarded from the identification and tracking of individual structures, and they are
therefore probably distinct from the dispersive eddy roots mentioned above.

The model proposed shares a few properties with the hairpin’s packet paradigm
(Adrian 2007) like being consistent with the logarithmic velocity profile and the
self-similar nature of the structures involved. Nevertheless, the results reveal crucial
differences that make the two models no longer compatible. The scenario proposed
here is much more disorganized and the structures involved are complicated multiscale
objects. If tall attached vortex clusters would be considered as markers for hairpin-like
structures, most of them would be born close to the wall and rise. However, not all
of the attached structures appear at the wall. Sweeps are created further away from
the wall and only later move towards it. In addition, the symmetries found between
tall attached ejections and sweeps with heights well above the buffer layer (i.e. the
evolution of their maximum and minimum wall distances, their wall-normal velocities,
their grouping in pairs, their lifetimes and sizes, etc.) diminish the importance of the
wall as the main source of tall attached eddies. Regarding the casual relations between
hairpins and ejections, tall attached vortex clusters do not grow in the wall-normal
direction as much as the ejections do, suggesting than the latter could not be the
consequence of fluid pumped by hairpins’ packets but rather their cause. Other
differences are also worth mentioning, such as that the merging of our structures
takes place mostly in the streamwise direction rather than in spanwise, as conjectured
for hairpins.
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