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The presence and structure of an Orr-like inviscid mechanism are studied in fully
developed, large-scale turbulent channel flow. Orr-like ‘bursts’ are defined by the
relation between the amplitude and local tilting angle of the wall-normal velocity
perturbations, and extracted by means of wavelet-based filters. They span the
shear-dominated region of the flow, and their sizes and lifespans are proportional
to the distance from the wall in the logarithmic layer, forming a self-similar eddy
hierarchy consistent with Townsend’s attached-eddy model. Except for their amplitude,
which has to be determined nonlinearly, linearised transient growth represents
their evolution reasonably well. Conditional analysis, based on wavelet-filtered and
low-pass-filtered velocity fields, reveals that bursts of opposite sign pair side-by-side
to form tilted quasi-streamwise rollers, which align along the streaks of the streamwise
velocity with the right sign to reinforce them, and that they preferentially cluster along
pre-existing streak inhomogeneities. On the other hand, temporal analysis shows that
consecutive rollers do not form simultaneously, suggesting that they incrementally
trigger each other. This picture is similar to that of the streak-vortex cycle of the buffer
layer, and the properties of the bursts suggest that they are different manifestations
of the well-known attached Q2–Q4 events of the Reynolds stress.

Key words: turbulence theory, turbulent boundary layers, boundary layer structure

1. Introduction
Nonlinearity is an essential characteristic of turbulent phenomena (Tennekes &

Lumley 1972). Linear models of statistically steady turbulent flow retain neither its
chaotic behaviour (Ruelle & Takens 1971) nor its self-similar multiscale organisation
(Kolmogorov 1941). In addition, linear models cannot predict the intensity of turbulent
perturbations. Nevertheless, some features of shear flows, such as the structure of
the velocity perturbations at the energy-injection scale, can be described reasonably
well by the linearised Navier–Stokes equations. In fact, since the source of turbulent
kinetic energy in a shear flow is the mean shear, it is unavoidable that at least part
of the energy production mechanism should be linear, in the sense of involving
interactions of the perturbations with the mean flow, rather than of the perturbations
among themselves.

† Email address for correspondence: mencinar@torroja.dmt.upm.es
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The best-known example is the Kelvin–Helmholtz instability of mean profiles with
inflection points, which controls many of the properties of the large-scale structures
in fully turbulent free-shear flows (Brown & Roshko 1974). On the contrary, the
mean profiles of wall-bounded flows lack an inflection point, and are linearly stable
(Reynolds & Tiederman 1967). Still, attempts to derive properties of wall-bounded
turbulence by assuming that the mean profile is marginally stable to perturbations
have a long history (Malkus 1956), and it has been known for some time (Butler
& Farrell 1992) that modally stable linearised perturbations can transiently grow by
drawing energy from the mean shear. Many linear models reproduce some of the
large-scale features of channel flow well from linearised dynamics (Farrell & Ioannou
1993; del Álamo & Jiménez 2006; Hwang & Cossu 2010).

One such mechanism was proposed by Orr (1907). The cross-shear velocity
component (wall-normal component in wall-bounded flows) is amplified over times
of the order of the inverse of the shear when backwards-leaning perturbations are
tilted forward by the mean velocity profile. The perturbations grow until they are
normal to the shear and are damped past that point, because continuity requires
that the change in vertical scale due to the tilting is balanced by the velocity
amplitude. Since perturbations eventually decay, there is no net production of kinetic
energy for the wall-normal velocity, but, for three-dimensional perturbations whose
wavefronts are oblique to the mean stream, some of the energy is transferred to the
other two velocity components. Moreover, since continuity does not interact with the
wall-normal variation of the wall-parallel velocities, the effect of this ‘lift up’ remains
after the wall-normal velocity has vanished (Jiménez 2013), forming the characteristic
streamwise-velocity streaks that populate wall-bounded flows (Kline et al. 1967).
Because the growth of the wall-normal velocity is much shorter lived than the
resulting streaks, we use the term ‘burst’ to describe it. The term was originally
coined for the ejections of low-speed streaks close to the wall in boundary layers
(Kim, Kline & Reynolds 1971). It was abandoned for a while due to controversies
about the nature of the ejections, but eventually reclaimed, in the sense introduced
above, to denote the intermittent behaviour of wall-bounded flows (Kawahara & Kida
2001; Jiménez et al. 2005; Flores & Jiménez 2010).

The connection between linearised Orr amplification and bursting was studied by
Jiménez (2013), who showed that the length and time scales predicted by the linear
model were in agreement with the bursting of the logarithmic layer in minimal
channels. This work was extended by Jiménez (2015), who tracked the temporal
evolution of the largest Fourier modes in channels designed to be minimal for the
logarithmic layer. The strongest wall-normal velocity events were found to closely
follow the predictions of the linearised equations when the mode was initially
‘coherent’ across the wall-normal direction (i.e. could be represented by a wavetrain).
In this paper we use the term wavetrain to refer to a periodic (infinite) travelling
wave, in contrast to a localised travelling wavepacket. A key aspect of these results
is the relation between the ‘tilting’ angle of the perturbations and their amplitude,
which is predicted by the linearised Orr–Sommerfeld equations, and serves as an
identification criterion for Orr-like bursts.

Several problems remain. The works just cited treat Orr bursts as individual
Fourier modes. This is no problem for linearised theory over spatially homogeneous
directions, since modes can eventually be added to form more complicated structures,
but it becomes questionable when bursts are to be identified in (nonlinear) extended
flow fields. The bursts observed in experiments and simulations are localised in space
as well as in time, and cannot be described as infinite wavetrains (Adrian 2007).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

30
2

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
id

ad
 P

ol
ite

cn
ic

a 
de

 M
ad

ri
d,

 o
n 

08
 Ju

n 
20

20
 a

t 0
7:

09
:4

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2020.302
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Momentum transfer by linearised eddies in channel flows 895 A23-3

Extensions of the classical quadrant analysis (Wallace, Eckelmann & Brodkey 1972;
Willmarth & Lu 1972) to three-dimensional tangential Reynolds-stress structures
(Lozano-Durán, Flores & Jiménez 2012; Dong et al. 2017), and later to their temporal
evolution (Lozano-Durán & Jiménez 2014), show that much of the momentum transfer
in channels and in other shear flows is carried by transient eddies with geometric
aspect ratios of order unity, rather than by infinite wavetrains. The reason why
Jiménez (2015) looked for Orr-like events in a minimal channel was precisely to
be able to use Fourier methods while maintaining the aspect ratios of experimental
observations, and the analysis failed when applied to wavelengths much shorter than
the size of the simulation box. It is not obvious whether the results from uniform
wavetrains can be generalised to a population of localised bursts of different sizes
in a large simulation box, and many of the tools used for the former, such as the
wavetrain inclination angle, need to be redefined for the latter.

Another important question is to what extent Orr bursting explains the momentum
transfer in full-sized channels. For example, it was shown by Jiménez (2015) that
the largest-scale field of the wall-normal velocity in a minimal channel can be
described as a linearised Orr burst over 65 % of the time, but it is unclear which is
the equivalent fraction in large boxes. For example, the tangential Reynolds stress
(−uv) in minimal boxes is estimated to burst 20 % of the time (Jiménez 2018), but
the stress structures identified by Lozano-Durán et al. (2012) only cover 8 % of the
wall.

In the present work, we introduce a band-pass-filtering method that allows us to
extend the analysis of bursting beyond minimal channels, detecting structures of
arbitrary size in full-sized simulations. Using large boxes is particularly important
when studying the characteristic time and length scales of the turbulent structures,
because the largest scales analysed in minimal computational boxes are also the most
prone to suffer simulation artefacts. We study a wide range of scales across different
Reynolds numbers, and simulation boxes, uncovering a range of self-similar Orr-like
events in the logarithmic region, with sizes of the order of their distance from the
wall. The identified wall-normal velocity eddies are self-similar with respect to their
three spatial dimensions and time.

On the other hand, it is important to understand the limitations of our approach.
The main one has to do with scale. The reason why Fourier modes are useful in
analysing the linearised equations is that harmonic functions are eigenfunctions of
uniform translations in space and time. Any linear mechanism without an explicit
dependence on the homogeneous coordinates cannot change the wall-parallel length
scales, including the Fourier wavenumbers. The range of scales mentioned in the
previous paragraph cannot be generated by the linearised equations, and remains an
empirical input parameter. The effect of the band-pass filters used in this paper is also
to isolate a narrow range of scales, which remains constant throughout the observed
evolutions. In this respect, both linearisation and the band-pass analysis exclude the
multiscale aspect of turbulence dynamics. To remedy this, we also analyse the effect
of low-pass filters that allow us to include the longer streaks of the streamwise
velocity, and some multiscale effects.

The remainder of this paper is organised as follows. The linear theory for the Orr
mechanism in turbulent channel flows is briefly reviewed in § 2. Section 3.1 covers
the domain definition and the database that will be used in the paper, and the rest
of § 3 describes the methodology used to detect and characterise Orr events. Results
are presented in §§ 4 and 5. Section 4 discusses the statistics and spatio-temporal
properties of band-pass-filtered flows, which isolate the bursts, and § 5 extends the
results to the low-pass-filtered velocity. Conclusions are gathered in § 6.
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2. The linear model
Let x= (x, y, z) be the streamwise, cross-shear and spanwise directions, q̌= (ǔ, v̌, w̌)

being the corresponding velocity components. We restrict ourselves to shear flows
with mean velocity profiles U = (U(y), 0, 0) with no inflection points, where the
average is taken over the two homogeneous directions (x, z) and time. The kinematic
pressure and viscosity are p and ν, respectively, defined as the quotients between the
dynamic quantities and the constant fluid density, which does not appear explicitly in
the equations. The Navier–Stokes equations can be written as

∂tq=−(U+ q) · ∇(U+ q)−∇(P+ p)+ ν∇2(U+ q), (2.1)
∇ · q= 0, (2.2)

where q̌=U+ q is the standard Reynolds decomposition and P is the mean pressure.
In general, upper-case letters denote ensemble averages and lower-case ones are
fluctuations. Primes are reserved for root-mean-square intensities. The linearised
version of (2.1) is

∂tqL =−U · ∇qL − qL · ∇U−∇pL + ν∇
2qL, (2.3)

where pL is the fast pressure (Kim 1989), although we suppress the subscript ‘L’
when referring to linearised variables for the remainder of the section. The linearised
equations can be manipulated into the Orr–Sommerfeld–Squire system (Orr 1907;
Squire 1933):

∂tφ =−U∂xφ + dyS∂xv + ν∇
2φ, (2.4)

∂tωy =−U∂xωy − S∂zv + ν∇
2ωy, (2.5)

where φ = ∇2v, ω = (ωx, ωy, ωz) is the vorticity and S = dyU is the mean shear.
Although (2.4) is autonomous in v, continuity and (2.5) connect it with the wall-
parallel velocities. Continuity and the linear pressure do not appear in (2.4), which is
a vorticity equation, but their effect is hidden in the definition of φ. For example, the
term dyS∂xv, which is responsible for the Kelvin–Helmholtz instability of free-shear
flows (Brown & Roshko 1974), vanishes identically in a homogeneous shear, U= Sy,
and (2.4) reduces to a simple advection–diffusion equation. Since such flows share
many of their bursting properties with boundary layers and channels, it was argued
by Jiménez (2013) that the amplification of the bursts in (2.4) has to be mediated by
the pressure through the Laplacian operator in φ. In fact, for a homogeneous shear in
the limit ν→ 0, and a pure Fourier mode of streamwise wavenumber kx, and spanwise
wavenumber kz = 0, the solutions to (2.4) are ‘Orr’ bursts of the form

v = cos2(Ψ ) exp [ikx(x− Syt)], (2.6)

where Ψ = arctan(St) is the inclination angle of the wavefront with respect to the y
axis. The inclination angle is a reinterpretation of time, and (2.6) relates the amplitude
of the v perturbations to the inclination of their wavefronts, being maximum when
Ψ = 0 and vanishing towards Ψ = ±π/2. The burst starts from a weak backwards-
leaning perturbation, which amplifies as it is tilted forward by the shear, is strongest
when it is normal to the shear and is damped again after this moment. The whole
evolution unfolds during times of the order of the shear time, S−1, and the linearisation
is only valid if this time is shorter than other evolution times in the equation.
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Momentum transfer by linearised eddies in channel flows 895 A23-5

For non-zero viscosity, there is a perturbation Reynolds number, Re = S/k2
xν, and

(2.6) decays in times of O(S−1Re1/3) (Jiménez 2013), which are typically long for
large structures. Nonlinearity is represented by the local eddy turnover time, ‖q‖2/ε,
where ‖q‖2/2 is the turbulent kinetic energy and ε is the energy dissipation rate.
Its ratio to the shear time is the Corrsin shear parameter, S∗ = S‖q‖2/ε. In wall-
bounded flows, S∗ ≈ 10 in the range 50ν/uτ < y < 0.7h, where uτ is the friction
velocity (Jiménez 2013), and (2.3) is therefore valid at least for the energy-containing
structures in this range.

2.1. Optimal transient growth
For more complex mean velocity profiles, Orr-like solutions can be computed
numerically. We use the algorithm in Schmid & Henningson (2001) to find solutions
that optimally amplify the total kinetic energy, including a y-dependent eddy viscosity
to account for the nonlinear turbulent dissipation, and a velocity profile and kinematic
viscosity corresponding to a turbulent channel at Reτ = uτh/ν= 2000, as in del Álamo
& Jiménez (2006) and Pujals et al. (2009). We use the approximation to the mean
eddy viscosity νT of Cess (1958):

νT =
ν

2

{
1+

K2Reτ
9

[
2η− η2

] [
3− 4η+ η2

]2
[

1− exp
(
−ηReτ

A

)]2
}1/2

+
1
2
, (2.7)

where η = y/h, and the parameters A = 25.4 and K = 0.426 are tuned to match
the profile of Hoyas & Jiménez (2006). The mean velocity profile is obtained by
integrating (1− η) uτ 2/νT . Using the same profiles, del Álamo & Jiménez (2006)
found that the maximum energy amplification occurs for λx� λz, but Jiménez (2018)
remarked that these wavenumbers are associated with the slow amplification of the
streamwise-velocity streaks through (2.5), and with very long evolution times that
may be limited by the nonlinear or viscous effects mentioned above. We are here
interested in situations such as (2.6), where the energy amplification is associated
with the transient bursting of v over a few shear times. These were shown by Jiménez
(2018) to be strongest at λx ≈ λz.

Figure 1(a) shows as shaded contours several snapshots of the most amplified
transient mode with λx = λz ≈ 0.7h, plotted at intervals of S(yg)1t ≈ 0.23, where
S(yg) is the shear at the centre of gravity of the v2 profile at maximum amplification.
It was shown in Jiménez (2013) that the dimensions of the most amplified inviscid
v-modes in the logarithmic layer are proportional to λ0 = 2π/(k2

x + k2
z )

1/2, and that
their centre of gravity is at yg ≈ 0.22λ0, or yg ≈ 0.16λx for equilateral wavevectors.
The same is true in figure 1(a), even if this case differs from Jiménez (2013) in
using an eddy viscosity. The temporal evolution of the perturbations in Jiménez
(2013) is controlled by λ0S(yg)t/λx. In the range of wavelengths 250ν/uτ . λx . 4h,
corresponding to 40ν/uτ . yg . 0.64h, we can assume that S(yg) ∝ uτ/yg ∝ uτ/λ0,
and that the scaling of the time is λ0S(yg)t/λx ∝ uτ t/λx. The result is that both the
dimensions and the temporal evolution of the amplified structures scale with λx.
The relation between the inclination angle Ψ and the amplitude of v was shown
in Jiménez (2013) to be fairly independent of the wavenumbers, and even of the
type of flow. These results are extended here to the three velocity components, and
to the eddy-viscosity equations, and we indeed find that the optimal modes in the
neighbourhood of λx ≈ λz scale well with λx in the range of wavenumbers mentioned
above. For example, the shape and inclination angles of the solution in figure 1(a) are
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FIGURE 1. Evolution of the amplitude and inclination angles of an optimal transient
growth mode in a channel flow (λx = λz). (a) Snapshots of the velocity components (top
to bottom, u, v, w), spaced by St ≈ 0.52, from left to right. The dashed lines show the
inclination angle computed as in Jiménez (2015). The contour levels are u=4, v=1,w=3
in uniform arbitrary units. (b) Amplitude as a function of the inclination angle. The
markers are:u, u;p, v;q, w; and correspond to the snapshots in (a).

remarkably similar to those in figure 19 of Jiménez (2018), where the wavelengths are
much larger, λx = 3.9h, λz = 5.55h, and the solid contour lines superimposed on the
second snapshot in figure 1(a), which show the moment of maximum amplitude of a
mode with λx= λz≈ 0.35h, also agree very well with those at the longer wavelengths.
The self-similar behaviour ceases to hold at heights corresponding to the buffer layer,
where the shear is no longer inversely proportional to y.

The dashed lines in figure 1(a) are the vertically averaged inclination angles at
each time, computed using the formula for single modes in Jiménez (2015); for a
more general one see (3.11) below. They represent well the instantaneous structure of
v, but they are biased towards the lower half of the structures for u and w because
the averaging in (3.11) is weighted with the energy, which tends to be concentrated
near the wall for these two components. This is also where the shear is highest,
leading to flatter inclinations. Figure 1(b) shows the amplitude–inclination relation for
the three velocity components in figure 1(a). The amplitude and inclination angles
of the wavetrain are defined as in (Jiménez 2015). Both definitions are extended in
(3.10)–(3.11), later in this paper, to more general wavepackets. The trajectory for v
is reminiscent of (2.6), but the wall-parallel components tilt forwards much faster, as
shown by the larger separation of their first few symbols, which are uniformly spaced
in time. Inspection of figure 1(a) shows that this is also due to the weighting of the
angle close to the wall, where the higher shear results in faster characteristic times.
The upper part of the u and w structures does not tilt much faster than that of v, while
the root of the latter tilts as fast as those of the other two components. The last half
of the angle–amplitude evolution is also different for the three velocity components.
The spanwise velocity has an amplitude peak at approximately the same time as v,
which is not present for u. At the end of the evolution, v decays at a rate dictated
by the shear, while u and w only decay under the effect of the eddy viscosity.
For inviscid perturbations in a uniform shear, the three velocity components have
well-differentiated behaviours. During the burst, v grows and decays in t = O(S−1),
as in (2.6), but u and w never decay (Jiménez 2013). In all cases, continuity requires
that the two wall-parallel components have to be proportional to each other once v
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Case Reτ Lx/h Lz/h Nx Ny Nz Dy Nf Th Reference

S1000 932 2π π 512 385 512 CH 1800 20 Lozano-Durán & Jiménez (2014)
L1000 934 8π 3π 2048 385 1536 CH 72 8.5 del Álamo et al. (2004)
S2000 2009 2π π 1024 633 1024 FD 590 11 Lozano-Durán & Jiménez (2014)
F2000 2000 8π 3π 512 512 512 FD 1146 14 Vela-Martín et al. (2018)
L2000 2003 8π 3π 4096 633 3072 FD 30 10.3 Hoyas & Jiménez (2006)
S4000 4164 2π π 2048 1081 2048 FD 40 10 Lozano-Durán & Jiménez (2014)

TABLE 1. Parameters of the simulations. Here Lx,z are the streamwise and spanwise
periods of the numerical box; Nx,y,z are the number of collocation grid points in y, or
Fourier modes in x, z, except for F2000, which was computed at full resolution but
stored at the reduced one given in the table; Dy represents the discretisation used for the
wall-normal direction, where ‘CB’ refers to Chebyshev polynomials and ‘FD’ to compact
finite differences; Nf is the number of fields used to compute statistics; and Th is the
time spanned by the approximately equidistant Nf snapshots in eddy turnover times. The
snapshots of S1000 and F2000 are close enough in time to compute temporal derivatives.

has died. An important message of figure 1 is that optimum growth solutions should
only be taken as indicative. The properties enumerated in the last few sentences
are common to any initial condition, while optimum growth is meaningless in an
inviscid flow. The behaviour of v, whose equation (2.4) is autonomous, is essentially
independent of the initial conditions, which mostly define the origin of time, but u
and w satisfy the forced equation (2.5), whose evolution depends on v and on the
initial conditions. The optimum transient growth criterion selects the initial condition
with a highest local maximum, but the v burst and the v-less final decay are robust
properties of most initial conditions involving backwards-leaning perturbations. Note
also that the energy growth in figure 1(b) is not particularly large, and that the same
is true of all the cases mapped in figure 29 of Jiménez (2018).

3. Methods
The rest of the paper seeks to relate the behaviour of fully nonlinear channel flow

simulations to the linearised dynamics sketched above.

3.1. The numerical datasets
We use direct simulations of canonical incompressible turbulent channel flows whose
half-height is h. Normalisation with ν and uτ is represented by a ‘+’ superscript, and
our primary Reynolds number is Reτ = h+. The simulations use periodic boundary
conditions in the wall-parallel directions, with periods Lx and Lz, and are summarised
in table 1. The Reynolds numbers range from Reτ ≈ 900 to 4000, and the simulations
include both medium-sized (Lx = 2πh, Lz = πh) and large (Lx = 8πh, Lz = 3πh)
computational boxes. The equations of motion are written as evolution equations
for the (x, z) averages of the streamwise and spanwise velocities, and for φ and
ωy, as in (2.4)–(2.5) without linearisation (Kim, Moin & Moser 1987). The spatial
discretisation is Fourier spectral in the two periodic directions, dealiased using the
pseudo-spectral 3/2 rule, but the discretisation along y varies among simulations,
as indicated in table 1. Some cases use Chebyshev polynomials collocated at the
Gauss–Lobatto–Chebyshev nodes. Others use spectral-like compact finite differences
(Lele 1992; Flores & Jiménez 2006), up to 12th-order consistent, in grids whose
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895 A23-8 M. P. Encinar and J. Jiménez

spacing is adjusted to keep the resolution approximately constant in terms of the
local isotropic Kolmogorov scale η = (ν3/ε)1/4. Full details can be found in the
original publications. F2000 has the peculiarity of being run as a direct numerical
simulation, but stored at a coarser ‘large-eddy simulation’ resolution (Vela-Martín
et al. 2018). The data stored are snapshots of the three velocity components, which
in most cases are approximately statistically independent and can only be used to
compile instantaneous statistics. However, the snapshots in S1000 and F2000 are
stored closely enough in time to provide temporal derivatives and histories without
recomputing the flow evolution.

3.2. Filtering
As discussed in § 2, the relation between the instantaneous tilting angle of the wall-
normal velocity perturbations and their amplitude can be used as a diagnostic property
for Orr bursts. Jiménez (2015) defined the inclination angle of the wavefronts of a
pure Fourier mode in terms of the wall-normal derivative of its complex phase, but
this definition, as well as that of the amplitude, needs to be generalised for spatially
localised objects. Consider the low-pass-filtered field

q̃(x, y, z, t;Λ)=
∫
B
Γ (x′ − x, z′ − z, Λ)q(x′, y, z′, t) dx′ dz′, (3.1)

where B stands for the full computational box, Λ serves as the filter width and

Γ (x, z;Λ0L, Λ0z)= γ (x, Λ0L) γ (z, Λ0z), (3.2)

with
γ (ξ, Λ0)=

1

Λ0

√
2π

exp
[
−

1
2(ξ/Λ0)

2
]
; (3.3)

and the band-pass-filtered one

q(x, y, z, t;Λ)=
∫
B

G(x′ − x, z′ − z, Λ)q(x′, y, z′) dx′ dz′, (3.4)

with
G(x, z;Λ,Λ0x, Λ0z)= Γ (x, z;Λ0x, Λ0z) exp(2πix/Λ). (3.5)

The spectral transfer functions of the two kernels are

|Γ̂ |2 = exp
[
−(kzΛ0z)

2
− (kxΛ0L)

2
]
, (3.6)

|Ĝ|2 = exp
(
−(kzΛ0z)

2
− [(kx − 2π/Λ)Λ0x]

2
)
, (3.7)

where the carat stands for the (x, z) Fourier transform. Both filters have spectral width
1k = O(Λ−1

0 ), but the band-pass filter G is centred at the wavenumber kx = 2π/Λ
(and kz = 0), while the low-pass filter Γ is centred at kx = kz = 0. Thus, if Λ and
Λ0 are chosen to be of the same order, Γ smooths the flow by damping everything
shorter and narrower than O(Λ0), while G selects only structures which may be wide,
but whose length is of the order of Λ. The latter is useful to isolate localised bursts,
while the former also retains the larger structures of the flow around them.

The low-pass filter Γ presents few conceptual problems, and its results are
described in § 5, but the band-pass filter (3.4) generates a complex field which
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FIGURE 2. (a) The wider filter on the left is the band-pass kernel G(x, 0) for Λ= 4π/9.
The solid darker line is Re(G) and the lighter one is Im(G). The two envelopes are:
- - - -, γ (x, Λ0L); — · —, γ (x, Λ0z). The narrower filter on the right corresponds to
Λ= π/18, although the amplitude has been divided by four for the purpose of plotting.
(b) Sample signal, g = sin(12x) if x < 0 and sin(3x) otherwise. (c) Its amplitude after
band-pass filtering with Λ= π/6. The solid line in (c) is the amplitude |Re(G)| and the
dashed one corresponds to |G|.

is not easily interpreted as a flow, and requires some discussion. Its kernel G is
a monochromatic complex wave in the streamwise direction whose amplitude is
modulated by the Gaussian (3.3) in the streamwise and spanwise directions. It is
essentially a complex-valued continuous Morlet or Gabor wavelet (Farge 1992), whose
real and imaginary parts are represented in figure 2(a) as functions of x. The number
of oscillations contained within the Gaussian envelope is approximately 2Λ0x/Λ. To
keep the filters self-similar we choose Λ0x=Λ/2 and Λ0z=Λ/6, implying an aspect
ratio Λ0x :Λ0z≈ 3 : 1, which captures the strongest wall-normal velocity perturbations
(see figure 3b). Changing this aspect ratio to 2 : 1 or 4 : 1 did not qualitatively change
the results.

The main advantage of filtering a real-valued function with a complex wavelet is
that the real and imaginary parts of the resulting field preserve phase (positional)
information, while its absolute value hides the oscillations of the wavelet (Sreenivasan
1985; Farge 1992). A visualisation for synthetic data is presented in figure 2(b).

In fact, the band-passed field, a, of a generic velocity component can be interpreted
as the coefficient of a local Fourier expansion that optimally approximates the flow
within the Gaussian envelope (3.2). It minimises the weighted L2 error

J[a](x)=
∫
B
Γ (x′ − x, z′ − z)|a(x′, y, z′)− a†(x, y, z) exp[2πi(x′ − x)/Λ]|2 dx′ dz′, (3.8)

where the dagger denotes complex conjugation and a is either u, v or w. Note that
a† in this integral is evaluated at the centre of the filtering kernel, x, rather than at
the integration variable, x′, and that the Fourier wavetrain, exp

[
2πi(x′ − x)/Λ

]
, is

centred in each case at the filter position. This implies that a† can be interpreted
as a field of coefficients of ‘local’ Fourier wavetrains, whose absolute value is
|a(x, y, z)|, and whose argument is − arctan(Im(a)/Re(a)). Thus, although q cannot
be used as a filtered velocity field, its absolute value is the local wavetrain amplitude
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¬ z
/h

(a) (b)

FIGURE 3. (a) Transfer functions: - - - -, band-pass filter G; ——, low-pass filters Γ . The
contours are (0.2 : 0.2 : 0.8). (b) Sample filtered premultiplied spectra of v in L2000, at
y/h= 0.15 and Λ/h= 0.175. The dashed contour is |Ĝ|2 = 0.2. The shaded contours are
the full kxkzEvv; ——, low-pass filtered; — · —, band-pass filtered. The spectral contours
are kxkzEvv/u2

τ = (0.014, 0.029, 0.071, 0.114).

(Sreenivasan 1985), and the wall-normal derivative of its argument is a local
inclination angle, as in Jiménez (2015).

It is convenient to choose the short-wave limits of the low-pass and band-pass filters
to be of the same order, so that they isolate related structures. The (1/e) limit of (3.7),
i.e. the argument that makes the filter gain equal to (1/e), is kx=2π/Λ+1/Λ0x, while
that of (3.6) is kx = 1/Λ0L. Equating them results in Λ0L =Λ/(2π+Λ/Λ0x). For our
previous choice of Λ0x =Λ/2, this implies Λ0L =Λ/8. The transfer function of the
two filters is represented in figure 3(a). The cospectrum of any two filtered variables
can be computed from the unfiltered cospectrum as Ea c= Eac|Ĝ|2, with an equivalent
formula for Eã̃c. An example of the effect of the band- and low-pass filters on the
spectrum of a representative plane of v is shown in figure 3(b).

Note that the computation of the filtered fields can be done economically because
the streamwise and spanwise directions are periodic, and fast Fourier transforms can
be used to compute the convolutions (Canuto et al. 1988).

3.3. The band-pass-filtered pseudo-spectrum
The perturbation energy of the filtered flow fields can be directly computed from their
spectrum:

Eac(y;Λ)=
∑
∀kx,kz

Ea c(kx, y, kz;Λ)=
∑
∀kx,kz

|Ĝ|2(kx, kz;Λ)Eac(kx, y, kz), (3.9)

which is represented in figure 4 for the three velocity components and for the
tangential Reynolds stress, as a function of y and of the filter wavelength Λ. Because
the filter wavelength represents the size of the scales retained by the filter, we can
think of Eac(y; Λ) as a ‘pseudo-spectrum’ with pseudo-wavelength Λ. Figure 4
shows that the wall-normal location of the maximum energy is proportional to the
filter width for a range of heights corresponding to an extended logarithmic layer,
y ∈ (100ν/uτ , 0.4 h). This is also approximately the region where a self-similar
hierarchy of wall-attached velocity structures with sizes proportional to their distance
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y/h

(a) (b) (c) (d)100

10-1

10-2

10010-1 10010-1 10010-1 10010-1

Λ/h Λ/h Λ/h Λ/h

FIGURE 4. Pseudo-spectra of the band-pass-filtered velocity components and of their
tangential Reynolds stress, as a function of the filter wavelength and of the distance from
the wall: (a) Euu; (b) Evv; (c) Eww; (d) −Euv . Here Reτ = 5200 (Lee & Moser 2015). The
contours are 90 % and 50 % of the maximum as a function of y for each filter wavelength.
The solid and dashed lines bracket the most energetic part of Evv in (b). The upper
(solid) limit is y=Λ. The lower (dashed) one is y= 4Λ/11. The dash-dotted line is the
wall-normal location of the maximum for each filter width.

from the wall is found to exist (Townsend 1976), and we will refer to it as our
definition of the logarithmic layer from now on. Note that, although the filter is
self-similar in the streamwise and spanwise directions, it contains no information
about the sizes in y, and thus the uncovered self-similarity in y is not a property of
the filter, but of the spectra of the velocity components. Owing to the removal of
the large scales by the filter, the wall-parallel velocities also show long self-similar
ranges, albeit centred at larger scales. This was shown also to be the case in Abe,
Antonia & Toh (2018), where a minimal streamwise unit was used to remove the
large scales of w, uncovering a self-similar behaviour for this component.

Figure 4 allows us to determine which distances from the wall should be used to
characterise eddies of different scales. The band-pass filter (3.5) produces a flow field
that is locally averaged within each wall-parallel plane, but eddies and bursts also
have a vertical dimension, which figure 4 shows to be proportional to their horizontal
ones (Lozano-Durán et al. 2012). It was shown by Jiménez (2013) that bursts may be
characterised by a vertically averaged amplitude,

A2
a =

1
y1 − y0

∫ y1

y0

|a|2 dy, (3.10)

and by a mean inclination angle,

Ψa = arctan
Λ
∫ y1

y0
Im(a†∂ya) dy

2π
∫ y1

y0
|a|2 dy

, (3.11)

where a stands for either u, v or w, and the integrals extend over the intense part of
the eddy. The average in (3.11) is weighted with the square of the amplitude because
strong perturbations typically coexist in the filtering window with weaker ones, whose
inclination angle is not necessarily small, nor relevant.

The limits y0 and y1 are chosen to bracket the intense band of Evv in figure 4(b),
and the same limits are used for all variables. The upper limit is very close to the
Corrsin spectral scale, y1 = Λ, above which the shear is too weak to interact with
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Name Λ/h y0/h y1/h S1000 L1000 S2000 F2000 L2000 S4000

Λ1 1.4 1.0 0.51 ◦ ◦ ◦ ◦ ◦ ◦

Λ2 0.7 0.7 0.25 ◦ ◦ ◦ ◦ ◦

Λ3 0.35 0.35 0.13 ◦ ◦ ◦ ◦ ◦

Λ4 0.175 0.175 0.063 ◦ ◦ ◦ ◦ ◦

Λ5 0.087 0.087 0.032 ◦ ◦

Λ6 0.044 0.044 0.016 ◦

TABLE 2. Properties of the filters used. Here Λ is the filter width defined in (3.5), and
y0, y1 are the integration limits in (3.10)–(3.11). A circle below a simulation indicates that
that filter was computed for it.

eddies of size Λ (Jiménez 2018). The lower limit, y0 = 4Λ/11, also scales with Λ,
and represents the point below which impermeability damps v. Because these limits
are adjusted for the wall-normal velocity, while the u or w structures are larger than
those of v, figure 4(a,c) shows that they are too far from the wall to capture more than
a fraction of the energy of the wall-parallel components. Approximately energy of the
band-passed spanwise component is captured within the band, closer to the lower limit,
potentially associated with the short scales of w. Longer features of w fall outside
the band, and probably come from larger structures farther away from the wall (del
Álamo et al. 2004). On the other hand, the tangential Reynolds stress in figure 4(d) is
captured well, supporting the classical classification into ‘active’ and ‘inactive’ eddies
of Townsend (1976), as a substantial amount of longer u and w perturbations carry
little tangential Reynolds stress.

From now on, we will use the quantities in (3.10)–(3.11) to represent the local
amplitude and inclination angle of our flow fields. Their main practical advantage is
that they reduce the dimensionality of our dataset, because each filter has an associated
three-dimensional data space (the two wall-parallel positions and time), instead of the
full four-dimensional one. In addition, they act as a filter in y, excluding structures
outside the band (y0, y1), or with very different vertical dimensions from the band
thickness. They are centred at [x, (y0 + y1)/2, z], and the vertical average is only
meaningful whenever a velocity perturbation of size comparable to Λ happens to
be within the vertical integration window. Otherwise, the average reverts to the
unconditional mean. For example, when several wavetrains with different inclinations
are stacked along the wall-normal direction, the integral of their phase derivatives
produces an average inclination angle which is similar to the global ensemble-averaged
inclination.

3.4. Filter parameters
Table 2 gathers the information for the filters used in the paper. We use six
wavelengths,

Λi/h=
8π

9
2−i, i= 1, . . . 6, (3.12)

with the corresponding filtered fields denoted by qi= q(x, y, z, t;Λi) for the band-pass
filters discussed in § 4 and q̃i = q̃(x, y, z, t; Λi) for the low-pass ones in § 5. They
cover the energy spectrum with logarithmically equispaced bands of wavelengths,
and span the range that can be expected to be relevant for the logarithmic layer.
The long-wavelength limit of the widest filter is kept constant in outer units across
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Momentum transfer by linearised eddies in channel flows 895 A23-13

Reynolds numbers, Λ1/h= 4π/9. It follows from figure 4 that this filter corresponds
to y/h ∈ (0.5, 1.4), which is well above the expected self-similar region, but it is
retained here to compare it to the experiments in Jiménez (2015), who analysed the
first streamwise mode of a minimal channel with Lx=π/2. It allows us to test whether
the minimal domain used in that work affected the results. The short-wavelength limit,
Λ+ ≈ 180, scales in wall units, resulting in an increasing number of filter bands as
the Reynolds number increases. In the highest Reynolds number case S4000, this
filter corresponds to Λ6. Since both our Reynolds numbers and our filter widths
are approximately spaced by powers of two, there are matching filters for all the
simulations, both in outer and in inner units, allowing us to compare scaling criteria.

To estimate how much energy is retained by our band-pass filtering and vertical
integration operations, we compute the ratio between the energy of the filtered and
unfiltered wall-normal velocity field within a given band of wall distances as a
function of the filter wavelength. It ranges from 10 % to 20 %, with the higher limit
corresponding to the narrower filters. These values are similar to that for the single
most energetic mode in Jiménez (2015). In our case, we can study multiple sizes
covering a broad range of scales, but the quantification of the total filtered energy
is not straightforward because the spectral and wall-normal bands of the filters
overlap. One way of getting the equivalent to Parserval’s theorem for localised basis
functions would be to project the velocity onto an orthonormal wavelet basis instead
of using continuous wavelets (Meneveau 1991), but at the cost of limiting the spatial
locations at which we could have information of a given scale, making it unsuitable
for smoothly tracking the temporal evolution of the structures. Another approach
is to rescale the kernels so that they recover the total energy when integrated
over scale space (Leung, Swaminathan & Davidson 2012), but this distorts the
amplitudes, and only works for a particular spectrum. We have chosen to make
our transfer functions unity at their nominal wavelength. The energy contained in
the overlap of neighbouring filters is then about 2 %–5 % (non-neighbouring bands
are irrelevant because they do not overlap vertically). Accounting for overlaps, our
filters approximately retain 20 % of the total energy of the wall-normal velocity in
60ν/uτ < y< h at Reτ = 2000, with minor differences among Reynolds numbers. This
energy ratio concerns the band-pass filter that is designed to isolate the bursts. The
less isolating low-pass filter retains 50 % (Λ1)–70 % (Λ4) of the turbulent kinetic
energy, and we will see through the paper that most of the conclusions obtained for
the band-passed structures carry over to the low-passed ones.

4. Band-pass-filtered amplitude and inclination fields
Figure 5 shows snapshots of the amplitude and inclination angle of the band-

pass-filtered wall-normal velocity, as defined in (3.10)–(3.11). Figure 5(a,b) uses the
widest of our six filters, v1 (Λ = 1.4h), while figure 5(c,d) uses the narrowest one,
v6 (Λ = 0.044h), which is 32 times narrower. To facilitate comparison, the insets in
figure 5(c,d) are magnified by the ratio of the two filter widths, resulting in structures
of similar size to those in figure 5(a,b). This supports our remark in § 3.2 that the
band-pass filter isolates structures of size proportional to Λ. The amplitude fields in
figure 5(a,c) are smooth, with distinct intense regions which are candidates for Orr
events at the moment of peak amplitude. They are highlighted as line contours in
both the amplitude and inclination fields, and it is visually clear from figure 5(b,d)
that the regions of high intensity are associated with vertical inclinations.

The joint probability density function (p.d.f.) of Av and Ψv is presented in
figure 6(a–e), with the amplitude normalised by the modal value, AvM, at which
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FIGURE 5. Snapshots of (a,c) the amplitude, A+v , and (b,d) the inclination angle, Ψv of
the band-pass-filtered wall-normal velocity of S4000 for (a,b) v1 and (c,d) v6. While the
top snapshots have been carefully picked to contain a burst at this scale, the bottom ones
are randomly chosen, because all snapshots contain at least one burst. The inset amplifies
a region of v6 with a burst. The amplification factor, 32, corresponds to the wavelength
ratio between both filters. The contours are A+v = 0.5 max {A+v }.

its p.d.f. is maximum. As in Jiménez & Hoyas (2008), the p.d.f.s collapse better in
this normalisation than with the mean. While figure 5 emphasises the self-similarity
of the filtering operation, figure 6(a–c) tests the self-similarity of the filtered flow,
which should hold both in inner and in outer units throughout the logarithmic region.
Figures 6(a) and 6(b) each includes p.d.f.s at three Reynolds numbers, but those
in figure 6(a) have the same filter width in outer units (Λ/h = 0.35) and those in
figure 6(b) have the same width in inner units (Λ+ ≈ 350). In both cases, the p.d.f.s
agree well. Figure 6(c) collects the p.d.f.s for all the Reynolds numbers and all the
filters whose vertical domain is contained within the logarithmic region (see table 2).
The solid contours are the average of all the p.d.f.s and the dashed ones bracket the
narrowest band that contains the corresponding contours of all the cases. It is clear
from these results that the similarity of the p.d.f.s is satisfied extremely well.

Figure 6(d) displays the p.d.f. of the widest filter v1, averaged over all the flows
in table 2. This filter is too wide to collapse with the ones in the logarithmic layer,
but all the p.d.f.s used in figure 6(d) also agree well among themselves (not shown).
The averaged p.d.f. is compared in the figure with the results in Jiménez (2015),
who analysed a single Fourier mode of wavelength comparable to Λ1. The good
agreement validates the approximate equivalence between the new methodology and
the monochromatic analysis in Jiménez (2015).

The collapse of the p.d.f.s in figure 6 also supports that the behaviour of the v-
bursts is relatively independent of the numerical box. Figure 6(a–e) contains p.d.f.s
from a variety of numerical boxes, which agree well among themselves, and the p.d.f.
from Jiménez (2015) in figure 6(d) uses a very small box, Lx/h = π/2, Lz/h = π/4,
which only represents well the structures below y/h≈ 0.25, but which is too small for
the larger ones farther from the wall.

The p.d.f.s in figure 6 have two distinct regions. Their core, which includes most
of the probability mass, contains vertically oriented structures with amplitudes of the
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FIGURE 6. (a–e) Joint p.d.f.s of the amplitude, Av , and inclination angle, Ψv , of the
filtered wall-normal velocity. The amplitudes are normalised with their mode, given in
( f ). Contours contain 50 %, 90 % and 99 % of the probability mass. (a) Joint p.d.f. of
v3 for S1000, S2000 and S4000. (b) Joint p.d.f. of v3, v4 and v5 for S1000, S2000 and
S4000, respectively. (c) Averaged joint p.d.f. for the filters that fall in the logarithmic
region, v2 to v6, for the available cases, as in table 2. The solid lines are the averaged
p.d.f. The dashed lines along each contour bracket the minimal area that contains all of
the individual joint p.d.f.s. (d) The solid lines are the average of all the joint p.d.f.s of
v1. The dash-dotted red line is as in figure 3 in Jiménez (2015). (e) Joint p.d.f. of v3 for
F2000. The arrows are the CMVs, normalised to unit length. The colours are the standard
deviation of the CMVs normalised with their mean, ranging from 0.4 (dark blue) to 6.5
(red). ( f ) Modal values used to normalise the amplitudes. Symbols:u, S1000;E, L1000;
p, S2000;@, F2000; F, L2000;q, S4000.

order of the modal value AvM. That the typical inclination of v in channels is vertical
had previously been shown using proper orthogonal decomposition by Moin & Moser
(1989), and using autocorrelation functions by Sillero, Jiménez & Moser (2014).

The upper part of the outermost isocontour of the p.d.f.s contains large amplitudes
and inclinations, and is approximately triangular. The extreme values and low
probabilities in this region suggest that these points represent individual structures,
while the triangular shape implies a definite statistical relation between the inclination
angle and the intensity, as graphically suggested by figure 5. Weak regions are
inclined either forwards or backwards, and strong ones are approximately vertical or
slightly tilted backwards, as in the transient linearised bursts discussed in § 2.1.

Moreover, the upper part of the p.d.f. is traversed from left to right, as expected of
shear-dominated structures. This was already shown to be the case for monochromatic
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895 A23-16 M. P. Encinar and J. Jiménez

wavetrains in Jiménez (2015), but is confirmed here for localised structures in large
boxes. In the time-resolved cases, S1000 and F2000, we can define conditional mean
velocities (CMVs) in the (Ψv, Av) parameter space as〈[

DΨv
Dt

,
DAv
Dt

]〉
(Ψv ,Av)

, (4.1)

where 〈 〉(Ψv ,Av) denotes conditional averaging at (Ψv, Av) and D/Dt = ∂t + CΛ∂x is a
semi-Lagrangian approximation to the total derivative that incorporates an advection
velocity, CΛ, estimated by linear regression of the time-dependent x location of the
maximum of the x–t two-point two-time autocorrelation of Av, using at each instant
a centred seven-point time stencil. In this approximation, the advection velocity
is assumed to be unique for the whole (x, z) plane, independently of the number
of bursts present at each moment, and depending only on the filter width. This
is justified because the structures of the logarithmic layer were shown not to be
dispersive by Lozano-Durán & Jiménez (2014) and by Jiménez (2018), and because
the uniform scale of the band-pass-filtered variables would probably guarantee a
uniform advection velocity even in they were. The rest of the temporal derivatives
in (4.1) use five-point centred finite differences. Note that, although the advection
velocity of individual structures is known to be approximately equal to the mean flow
velocity, and is therefore a function of y, the velocity used here for the vertically
integrated bursts is independent of the wall distance.

The result is presented in figure 6(e) for F2000, where the CMVs are plotted in the
(Ψv,Av) plane as arrows pointing towards the next most probable state. The arrows are
coloured by the conditional standard deviation of the CMV, which is high in the core
and lower edge of the p.d.f. and low in its upper edge, as in Jiménez (2015). This
suggests again that the mean velocities in the upper part of the p.d.f. are representative
of individual coherent events, although it is unclear at this point whether the full
periphery can be considered to represent a single burst, or whether it is formed by
tangents of different burst trajectories at different locations.

While the coherent part of the p.d.f. is traversed from left to right, its lower part is
traversed from right to left, closing the cycle. This is inconsistent with linear models,
but the standard deviation of the CMVs in this region is large, suggesting that it is
populated by structures that cannot be characterised solely by their position in the
(Ψv, Av) plane, and whose evolution cannot be modelled by quasi-linear dynamics.

Finally, figure 6( f ) shows the modal values used to normalise Av in the rest of
figure 6. Different box sizes yield the same modal value, which is fairly constant when
compared with the wall-normal velocity fluctuation averaged within the same bands:

(V ′)2 =
1

y1 − y0

∫ y1

y0

(v′)2 dy. (4.2)

This constancy is a consequence of the self-similar definition of the filter, whose
transfer function has constant logarithmic width in λx, independently of y and Λ.
Since figure 4 shows that the wavelengths of the spectrum of the wall-normal
velocity also scale self-similarly with y, the energy selected by a truly self-similar
filter should be approximately constant, but, because our band-pass filters are defined
as low-pass in λz (see § 3.2), the transfer function of the narrower filters spans a
wider range of λz. The extra energy in these wavelengths explains the slightly larger
modal values of the narrow filters in figure 6( f ).
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FIGURE 7. Joint p.d.f.s of A and Ψ involving u3 and w3 for S1000. All amplitudes are
normalised with their modal values: (a) Ψu and Au/AuM , contour levels are 90 %, 50 % and
10 % of the probability mass; (b) Ψw and Aw/AwM , contours as in (a). (c–f ) Black contours
are the joint p.d.f. of Av/AvM and Ψv , contours containing 99.9 %, 99 %, 90 % and 50 %
of the probability mass. Shaded contours are the mean of several quantities conditioned
to the value of Av and Ψv . Conditional average of (c) Au/AuM , (d) Aw/AwM , (e) Ψu and
( f ) Ψw.

4.1. Wall-parallel velocities
We next compute the amplitude and inclination angles of the band-pass-filtered
wall-parallel velocities. Figures 7(a) and 7(b) show the joint p.d.f.s of (Ψ , A) for u
and w, respectively. Their structures are preferentially tilted towards the direction of
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895 A23-18 M. P. Encinar and J. Jiménez

the shear, in contrast to the wall-normal velocity structures, which are almost equally
distributed between forward and backward inclinations. This is more pronounced for
the spanwise velocity, which is rarely tilted backwards (10 % probability), and subtler
for the streamwise component, which is tilted backwards 40 % of the time. As with
the wall-normal velocity, there is a statistical correlation between the amplitude and
inclination of the spanwise velocity, but the same is not true for the streamwise
velocity, for which the two quantities are essentially unrelated. Scrambling Au with
respect to Ψu leaves their joint p.d.f. unchanged (not shown). The behaviour of
the inclination angles and amplitudes of u and w in the upper part of their joint
p.d.f.s is qualitatively similar to the linearised trajectories in figure 1(b), although
the inclination angles differ quantitatively. For example, the spanwise velocity shares
with the transient-growth model an amplitude ‘peak’ towards positive inclinations,
but the tilting angle of the linearised peak is always larger than that of the direct
numerical simulation by 0.1–0.2 radians. Using unconditional two-point correlations
of the wall-normal and spanwise velocity components, Jiménez (2018) argued that the
cross-stream velocities contributing to the correlation are part of a quasi-streamwise
‘roller’. Some of the features of those autocorrelation functions are shared by the
intense core of the joint p.d.f.s in figures 6 and 7. For example, the autocorrelation
of the wall-normal velocity in the logarithmic layer is approximately vertical (Ψv ≈ 0),
and the spanwise velocity is tilted forward by Ψw ≈ π/6, in agreement with the
amplitude peaks of the joint p.d.f.s of v and w. Because the correlation function is
dominated by strong events, these similarities are not surprising, but they confirm that
the band-pass filter retains some of the structure of the intense events of the velocity.

To explore the relation between the different variables during the bursting cycle,
we compute averages conditioned to (Ψv, Av). The conditional mean amplitudes of
u and w are presented in figure 7(c,d) and their conditional inclinations are shown
in figure 7(e, f ). If we assume that the CMVs in figure 6(e) reflect the temporal
evolution of individual strong bursts, we can describe the burst by the evolution of
the conditional mean values of the different quantities as we move from left to right
along the upper edge of the p.d.f. of (Ψv, Av). The burst starts from intense u, with
weaker v and w. At this stage u and v are tilted upstream, but w is too weak for
its inclination to be defined. The ambient shear then tilts everything forward, and v
and w are amplified while the amplitude of u decreases. Beyond the point where v
is vertical, the amplitude of the wall-normal velocity decreases again, but w reaches
its maximum value. The interpretation of these observations will be deferred to § 4.2,
after we have examined the conditional temporal behaviour of individual bursts.

4.2. Conditional mean evolutions
While in the previous section we inferred a hypothetical burst evolution from the
statistical relations among the different quantities along the upper edge of the joint
p.d.f. of (Ψv, Av), we now turn our attention to the direct study of their conditional
temporal evolution by examining structures that pass through the upper ‘tip’ of the
joint p.d.f.,

Av > 2AvM, |Ψv|< 0.15, (4.3a,b)

at some stage of their lives. We know from figure 6(e) that the standard deviation
of the CMVs passing through these very intense events is low, and that the statistics
along the upper edge of the p.d.f. are approximately the same as those of linearised
Orr bursts. This suggests that they represent the evolution of individual bursts, at least
as long as the amplitude threshold is chosen high enough to separate bursts from each
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Number of bursts Dataset Λ1 Λ2 Λ3 Λ4

In total S1000 70 228 1301 9777
In total F2000 863 5098 34 802 274 265
Per time–area in SΛ/Λ2

i S1000 0.267 0.106 0.085 0.091
Per time–area in SΛ/Λ2

i F2000 0.16 0.114 0.106 0.111

TABLE 3. Number of bursts found in different band-pass-filtered time series. See table 1
for details of the simulations and § 4.2 for the details of the time–area normalisation.

other. The restriction in (4.3) to a small inclination angle is not strictly necessary,
since it follows from figure 6 that intense wall-normal velocity structures are almost
always vertical, but including it allows us to relax somewhat the requirement for large
amplitudes, and to identify bursts that would be too weak otherwise. The analysis
is most easily performed in a convective frame of reference, (ξ = x − CΛt, z, t),
where CΛ is the convection velocity used in (4.1). We identify the position and
time, (ξc, zc, tc), of the maximum amplitude for each region as representative of the
‘peaking’ point, (ξc, zc, tc)= argmax Av(ξ , z, t), of the burst, and use it as the centre
for our conditionally averaged evolution 〈·〉B, defined as

〈a〉B(Ξ, Z, T)=
1
N

∑
c=1,...,N

a(ξc +Ξ, zc + Z, tc + T), (4.4)

where N is the number of identified bursts for each filter (see table 3) and a is
either Au,v,w or Ψu,v,w. To avoid ‘false positives’, we discard small bursts for which
S < 2.25Λ2, where S is the temporally averaged area enclosed in the (x, z) plane by
the threshold in (4.3). Independently of the chosen threshold, approximately 5 % of
the identified bursts are temporally clustered in quick succession, reminiscent of the
‘packets’ of vortical structures reported by Adrian, Meinhart & Tomkins (2000), but
most cases cannot be easily grouped into such packets.

Bursts defined in this way are spatio-temporal objects in (ξ , z, t). To normalise their
density per unit duration–area, we assume that two bursts cannot occupy the same
volume in space–time, and that they scale spatially with Λ and temporally with the
inverse of the average shear across their integration band (3.10):

SΛ = (U(y1(Λ))−U(y0(Λ)))/(y1(Λ)− y0(Λ)). (4.5)

Their expected duration–size would then be proportional to Λ2/SΛ, and the number of
detected bursts should collapse when their total duration–area is normalised in these
units. Table 3 shows that this is approximately true, with a density close to 10 %
except for the largest filter, which is too large for the scaling to hold. This density
is of the same order as the volume fraction of the ‘Q’ structures studied in Lozano-
Durán et al. (2012).

Figure 8(a) shows a snapshot of the conditional burst of q2 in F2000 at peaking
time. Other filters collapse well with Λ, with average dimensions (`Ξ/Λ, `Z/Λ) ≈

(2, 1). The filtered spanwise velocity can be seen to be offset to one side of the
streamwise and wall-normal components, while the latter fall on top of each other.
If the average had been computed strictly as in (4.4), the conditional mean evolution
would have two symmetric lobes of Aw centred on the burst, but this symmetry is
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FIGURE 8. (a) Snapshot of the conditional bursts of q2 at SΛT = 0, the peaking time
of v2. The contours, normalised with the maximum of each component, are: shaded,
Av = (0.6, 0.8); solid, Au = (0.8, 0.9); dashed, Aw = (0.8, 0.9). (b–e) Different aspects of
the evolution of A and Ψ , conditioned to the presence of a burst, F2000. (b) Temporal
evolution of the maximum amplitude, as a function of time: ——, conditional u2; - - - -,
conditional u3. Symbols:u, u;p, v;q, w. (c) As (b), for the deviations of the inclination
angle with respect to their mean, at the position of the maxima of each component at
every instant. (d) Transient amplification of a linearised Orr burst. Conditions are as in
figure 1(b), but the energies are computed over the range of y corresponding to the Λ2
filter. (e) The shaded contours are the joint p.d.f. of (Ψv, Av) for Λ2: —u—, evolution
in (b,c), conditioned to (4.3); - –u- –, conditioned to the higher threshold (4.8); —p—
evolution in ( f,g), conditioned to (4.9). The five markers are SΛT=[−1.5,−0.3,0,0.3,1.5].
( f,g) As in (b,c), but conditioned to a burst precursor.

statistical, and does not imply the symmetry of individual events. The equations of
motion and boundary conditions of the channel are invariant to reflections with respect
to (x, y) planes, so that any solution (u(x, y, z), v(x, y, z), w(x, y, z)) implies that
(u(x, y, −z), v(x, y, −z), −w(x, y, −z)) is also a solution. Individual Orr events are
equally likely to be chiral-left or chiral-right, and the reflection symmetry can be
applied to each snapshot to obtain an average that is more representative of individual
events (Stretch 1990; Lozano-Durán et al. 2012). There is no unique way of deciding
how to do this consistently for complete histories, and the criterion that we found
to produce the least symmetric conditional mean was to always locate to the left
of the burst the strongest maximum of Aw as it passes through the spatio-temporal
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neighbourhood of its peak:

|Ξ |6 0.2Λ, |Z|6Λ, SΛ|T|6 0.2. (4.6a−c)

The conditional histories computed in this way only contain one region of strong w,
as in figure 8(a), suggesting that most of the underlying events have only one strong
spanwise velocity region, corresponding to a single streamwise roller. Double rollers
are found more seldom. Visual inspection of a representative sample of cases shows
that approximately 5 % of the bursts are almost symmetric, with two w lobes.

Figure 8(b) shows the conditional evolution of the maximum amplitude of the
three filtered velocity components as a function of time. Far from SΛT = 0, the
three components tend to their unconditional mean, which is used to normalise the
plot. The wall-normal velocity, which is used to condition the temporal evolution, is
amplified the most, but the streamwise and spanwise velocities are also amplified,
peaking at SΛT ≈ ±0.3, respectively before and after the peak of 〈Av〉B, as also
suggested by figure 7(d,e). The evolution of the deviation of the inclination angles
from their unconditional means,

〈ψa〉B = 〈Ψa〉B − 〈Ψa〉, (4.7)

is presented in figure 8(c), which plots the inclination at the location of the
maximum amplitude of each component. The evolution of the inclination angles
of the streamwise and wall-normal velocity is from negative to positive, and tends to
the unconditional mean beyond |SΛT| ≈ 1. The changes in Ψw are less pronounced,
with values closer to its unconditional mean across the whole evolution.

A reference to figure 1 shows that this behaviour is qualitatively similar to linearised
equilateral Orr bursts, but there are some interesting differences. The inclination angles
of u and v are proportional to each other in the upper part of the p.d.f. of (Ψv, Av),
where the presumed quasi-linear cycle takes place, but the inclination angle of w
is not. While Ψu evolves from negative to positive in both figures 1 and 7(e), the
inclination Ψw is never negative in figures 7( f ) and 8(c). Moreover the conditional
amplification of u, as given by the ratio between the highest and lowest conditional
averages in figure 7(c), is almost three times higher than that for w in figure 7(d),
while the opposite seems to be true in figure 1(b), and the maximum amplitudes
of the two variables in figure 8(b) are approximately equal. The reason turns out
to be the different spatial location of the various velocity components. We saw in
figure 8(a) that, while the structures of u and v are spatially collocated in (x, z),
the w-eddy is offset to one side, resulting in a weaker footprint in the conditional
joint p.d.f.s. Even more important is the vertical offset. The amplitudes in figure 1(b)
are integrated over the whole channel, but those in figure 7 are band-pass filtered.
This includes the wall-parallel filtering by wavelength, which has no effect on the
monochromatic wavetrain in figure 1, but also the restriction in (3.10)–(3.11) to a
band of wall distances, which changes the balance among the different components
as they drift vertically in and out of the filtering band. This effect is visually clear
from figure 1(a), and figure 8(d) shows that it can be reproduced by restricting
the amplitudes in figure 1(b) to the same band of wall distances as in figure 7. It
was already mentioned when discussing figure 1 that the definition of the angles
is biased by the different amplitude distribution of the three velocity components,
and it is now clear that so is the definition of the band-pass amplitudes. Thus, while
figures 7(c,d) and 8(b–d) might give the impression that the earlier part of the burst is
dominated by the association of u and v (such as in a spanwise-oriented roller), while

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

30
2

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
id

ad
 P

ol
ite

cn
ic

a 
de

 M
ad

ri
d,

 o
n 

08
 Ju

n 
20

20
 a

t 0
7:

09
:4

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2020.302
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


895 A23-22 M. P. Encinar and J. Jiménez

the later part is dominated by a streamwise roller (of v and w), this interpretation
could also be an artefact of how the flow is filtered. It should be remembered that
linear models cannot change the wall-parallel wavevector of a single mode, nor its
wall-parallel orientation, and changes in them have to be attributed to nonlinearity, or
to the different amplification of different wavenumbers within a wavepacket, which
probably would not apply to the relatively narrow wavebands here. This suggests
that the interpretation of the phenomenon as a ‘rotating’ roller outlined above should
be disregarded. Nevertheless, figures 8(d) and 1(b) are similar, even though the
relative amplitudes of the velocity components are different in both figures due to
the energy contained outside the y-band limits. Moreover, Jiménez (2013) showed
that the cross-correlation of v and w, integrated across the channel half-height, has a
delayed peak when it is conditioned to a v-burst, albeit with slightly different delay
between components. These evidences corroborate the causal relation between the
burst and the increase in the magnitude of w. Other interpretations are also possible.
For example, Aw could also be indicative of streak breakdown, which has been
observed in buffer-layer streaks (Kline et al. 1967; Jiménez & Moin 1991; Hamilton,
Kim & Waleffe 1995) or in transient growth modes in the transition of boundary
layers in the presence of a streaky background (Brandt & Henningson 2002).

Figure 8(b) includes results for two different filters, which scale well when
normalised with the mean shear (4.5), and imply lifetimes of the order of SΛT ≈ 1,
measured at one-half the maximum amplification. Using slightly different definitions
of mean shear and lifetime, Lozano-Durán & Jiménez (2014) and Jiménez (2015)
report the somewhat longer value SΛT ≈ 5. In fact, the evolution of the inclination
angle in figure 8(c) suggests that the conditional evolution only represents individual
bursts when they are relatively near the conditioning time, SΛ|T|. 0.5, beyond which
both the angle and the amplitude tend to their unconditional values.

This is better seen in figure 8( f ) which displays the (Ψv, Av) trajectory of
figure 8(b,c) on top of the joint (Ψv, Av) p.d.f. The trajectory follows the direction
of the CMVs near the conditioning point, but soon drops into the high-probability
region at the core of the p.d.f. Note that the trajectory crosses the lowest possible
point consistent with (4.3). Most eddies are in the core of the joint p.d.f., and
any conditional mean is dominated by the points closest to the core. In a similar
way, once the effect of the condition is lost, trajectories naturally fall towards the
probability maximum. Thus, if condition (4.3) is substituted by the higher-amplitude
one,

Av > 3AvM, |Ψv|< 0.15, (4.8a,b)

the conditional trajectory changes to the qualitatively similar, but higher-intensity,
trajectory plotted as dashed lines in figure 8( f ).

Perhaps the most interesting feature of the conditional evolution is the peak of u
preceding the burst, also represented by the high values of the conditional amplitude
of u over the left part of the joint p.d.f. of (Ψv, Av) in figure 7(c,e). Note that a
strong Au should not be interpreted as a especially strong streak of the streamwise
velocity, because the band-pass filter is designed to capture the energy of v, and the
structures of u are between six and ten times longer than those of v (Jiménez 2018).
The band-pass-filtered amplitude of a uniform infinite streak is zero, and we should
consider Au as a measure of the inhomogeneity of the streak, e.g. due to break-up
or to ‘meandering’. Streak inhomogeneities have often been identified as important
features of the logarithmic layer cycle (Flores & Jiménez 2010; de Giovanetti, Sung
& Hwang 2017). The difference between u and Au is illustrated in figure 9, which
shows both quantities in a wall-parallel plane of F2000. The streamwise velocity
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FIGURE 9. Wall-parallel plane of the streamwise velocity of F2000. The shading is u+
at y/h≈ 0.2, ranging from u+ ≈−5 (blue) to u+ ≈ 5 (red). The line contours are Au2 for
the same snapshot, representing 50 % and 75 % of the absolute maximum of Au2 at the
plane.

perturbations are shaded at y/h≈ 0.2, and the line contours are strong regions of Au2 .
It is clear from the figure that both flow features are markedly different, and should
not be confused.

The previous discussion shows that a burst of v is preceded by backwards-leaning
perturbations of u. The converse, that backwards-leaning perturbations of u act as
precursors of the bursts of v, is tested in figure 8( f,g) by the conditional evolution
of bursts conditioned to

Au > 1.8AuM, Ψu <−0.4, (4.9a,b)

which is on the left edge of the joint (Ψv, Av) p.d.f., but relatively far from its
top. As shown in the figure, the conditional burst develops as predicted, with
qualitatively similar temporal relations and delays among the different components
as in figure 8(b,c). It is particularly striking that, even if figure 8(e, f ) is conditioned
on u rather than on v, the amplification of the latter is even stronger than that
of the former, suggesting that at least the left part of the joint p.d.f. represents
well-organised bursts. A similar conclusion was reached by Jiménez (2015), who
showed that bursts could be linearly ‘predicted’ from conditions up to about half
their lifetime before the peak amplification of v. The mean trajectory in (Ψv, Av)
space of the evolutions initialised within (4.9) is plotted with squares in figure 8(e).
Attempts to use the later peak of Aw to ‘postdict’ the burst of v were not successful.
This may be interpreted as that strong, forward-leaning perturbations of w are not
generated solely by Orr bursts. If this kind of w-perturbations can be generated by
some other dynamics, denoted in this paragraph as ‘B’, it can only be assured that
Orr bursts lead to forward-leaning w perturbations, as well as do ‘B’ events; but
identifying forward-leaning w perturbations is not enough to determine if they come
from Orr bursts, or from ‘B’ dynamics.

5. Low-pass-filtered velocity fields

We mentioned in § 3.2 that, while the band-pass-filtered field (3.4) is useful in
isolating the amplitude and inclination of eddies of a given size, it is not easily
interpreted as a velocity. As a consequence, the conditional results in the previous
section give only limited information about the flow structure. In particular, the local
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FIGURE 10. (a) Spectra of the streamwise velocity (——) and the wall-normal velocity
(- - - -) integrated over y/h ∈ [0.2, 0.4]. Contours contain 50 % and 10 % of the
integrated spectral mass. (b) Distance from the wall of the point of highest intensity
of the conditional burst. Symbols: u, ejections; q, sweeps. The diagonal line is
yc/h= 0.5Λ/h+ 0.05.

sign of the velocities is missing, and so is the relation of individual features with the
flow around them. Both are important. Sweeps (negative wall-normal velocity events)
and ejections (positive wall-normal velocity events) are known to have different
characteristics (Wallace et al. 1972; Lu & Willmarth 1973; Lozano-Durán et al.
2012), and this asymmetry is strongest for the wall-attached structures responsible
for most of the tangential Reynolds stress (Dong et al. 2017). Similarly, bursts of
the wall-normal velocity are known to be associated with streamwise-velocity streaks
(Lozano-Durán et al. 2012; Dong et al. 2017), but the two velocity components have
very different sizes. Figure 10(a) shows that the spectrum of u in the logarithmic
region is much longer than that of v, and it is difficult to study the interaction of the
two variables if they are band-passed to a single scale.

Both deficiencies are substantially remedied by the low-pass-filtered velocity (3.1),
which is easily interpreted as a smoothed flow field, and retains the largest features
of the flow, including the long streaks of u. Unfortunately, these low-passed fields
are not approximate wavetrains or wavepackets, and we lose the information about
the local inclination angle used in (4.3) as part of the condition to identify bursts.
However, we saw when discussing that condition that the inclination angle was only
intended to relax the intensity identification threshold, since figure 6 shows that high
amplitudes are unlikely to be anything but vertical. As a consequence, we study in this
section conditional flow histories conditioned only on the intensity of the events, and
expect their inclination, if any, to emerge as a consequence of that conditioning. Since
this requires both a large computational box to contain the largest flow structures
and temporal information, the rest of the section only uses the temporally resolved
simulation F2000.

We create filtered fields using the low-pass filters described in § 3.2 and, to obtain
structures that are approximately equivalent to the band-passed ones in § 4.2, integrate
the resulting velocity over the same y bands. The resulting two-dimensional fields
recall the amplitudes studied in § 4.2, but contain intense regions of negative as well
as of positive velocity. Therefore, the process of isolating intense regions of the wall-
normal velocity now consists of two independent thresholding operations, ṽi > 2ṽ′i for
ejections and ṽi < −2ṽ′i for sweeps, where ṽ′i is the root-mean-square intensity of
the filtered time series. This results in two sets of intense events, which are treated
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Λ1 Λ2 Λ3 Λ4

Number of sweeps 637 2898 17 079 147 686
Number of ejections 797 3282 18 159 160 207
Number of pairs 410 1717 9995 82 009
Sweeps per time–area in SΛ/Λ2 0.118 0.065 0.052 0.06
Ejections per time–area in SΛ/Λ2 0.147 0.073 0.055 0.065

TABLE 4. Number of bursts found in the low-pass-filtered temporal series of F2000. The
details of the time–area normalisation are in § 4.2.

independently, and the rest of the section includes averages conditioned to one or
to the other. As a consequence, the presence of a sweep in a flow conditioned to
ejections should be considered a feature of the flow, not of the conditioning, and vice
versa.

As in § 4.2, the purpose of the threshold used to define the sweeps and ejections
is mostly to separate individual events, and its value is not critical. We also discard
bursts that are too small, and, in addition, merge into a single object bursts of the
same sign whose centres, (ξc, zc, tc), defined as the location of their maximum intensity,
are too close to each other. The centre of the resulting object is taken to be the centre
of the stronger of the two eddies being merged. We saw in § 4.2 that the size of the
bursts is `Ξ/Λ∼ `Z/Λ∼ Tuτ/Λ∼ O(1), and, after some experimentation, choose as
the merging criterion that√

(1tcuτ )2 + (1ξc)2 + (1zc)2 < 0.15Λ. (5.1)

The number of centres determined in this way is given in table 4 for each filter size.
Centring each burst on its defining extremum, the conditional structures are computed
as in (4.4), using the four-dimensional filtered histories without integrating them in y,
to retain the wall-normal burst structure:

〈a〉L(Ξ, y, Z, T)=
1
N

∑
c=1,...,N

a(ξc +Ξ, y, zc + Z, tc + T). (5.2)

For each burst, we use a centred four-dimensional box spanning the channel
half-height, y = (0, h), the wall-parallel box with dimensions Ξ/h=±4π, Z/Λ=±3,
and a time interval consistent with the burst lifetimes discussed in § 4.2, SΛT≈±5.
The conditional mean evolutions for the different filters are found to collapse spatially
when normalised with the height of the most intense point of the conditional evolution,
yc, which can be interpreted as the distance from the wall of the centre of the
conditional burst at the moment of its highest intensity. Figure 10(b) shows that yc
increases linearly with the filter width as y+c = Λ

+/2 + 100, corresponding to bursts
whose central height is proportional to Λ/2, with an offset of 100ν/uτ representing
the buffer layer. Because of this offset, the spatial structure of the bursts collapses
better with yc than with Λ, and this scaling will be used in the rest of the section.

Figure 11 provides three orthogonal sections of the three-dimensional structure of
the bursts at SΛT = 0, and shows that the scaling with yc is extremely good, only
interrupted by the channel centreline. The largest filters produce ‘cropped’ bursts at
y = h, but they agree well below that height. The dotted lines show the location of
the other two sections. Individual ejections and sweeps are often accompanied by a
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FIGURE 11. (a,b,d) Different sections of the conditional structure of ṽ at the peak of the
v-burst,SΛT = 0, for the four filters for F2000: ——, positive wall-normal velocity; - - - -,
negative wall-normal velocity. The contours are (−0.15, 0.15, 0.45) of the corresponding
extremum. In each case the top panel is conditioned to the sweep and the bottom one
to the ejection. The lines are: blue, ṽ1; orange, ṽ2; green, ṽ3; red, ṽ4. (c) Autocorrelation
function of the wall normal velocity, Cvv(1x, y, y′), at y′ = 0.05h= 100ν/uτ . The shaded
contours are the unconditional autocorrelation function: —— (blue), autocorrelation only
for positive v events; - - - - (red), autocorrelation only for negative v events. Contours are
(0.15, 0.3, 0.6) of the maximum correlation in each case.

single strong structure with opposite wall-normal velocity (Lozano-Durán et al. 2012),
sitting at Ξ ≈ 0, Z/yc ≈ ±1.2. Inspection of a representative sample of individual
bursts shows that only about 5 % of them have more than one companion, and are
approximately symmetric. As in § 4.2, the bursts in (5.2) are oriented to retain as
much as possible the asymmetry of this arrangement in the conditional mean. This is
done by placing on a negative Z the strongest ejection found in the neighbourhood

|Ξ |6 0.2Λ, |Z|6Λ (5.3a,b)

of the conditioning sweep (or vice versa), reflecting the velocity field as required. For
all the filters and conditions tested, the companion appears in the conditional evolution
as a single opposite-signed ‘partner’ with half the intensity of the main structure.
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FIGURE 12. The (y, Z) section of the conditional mean structure of q̃2 at the peak of the
v-burst, SΛT = 0, for F2000. The shaded contours are streamwise velocity perturbations,
ũ+2 = ±(0.5, 0.9, 1.3). The arrows are the cross-plane velocities, with values in (ṽ2

2 +

w̃2
2)

1/2
= [0, uτ ], represented by the arrow length. (a) Conditional sweep. (b) Conditional

ejection.

Small differences can be seen between the conditional sweeps and the ejections.
For example, the ejections in the bottom panel of figure 11(b) have small upstream
(Ξ <0) ‘tails’ near the wall, while the sweeps in the upper panel have a more rounded
downstream ‘nose’ farther from the wall. Interestingly, both features are also found in
the autocorrelation function of the wall-normal velocity, added to figure 11(b) as a
shaded area, suggesting that different regions of the autocorrelation function of the
wall-normal velocity are controlled by perturbations of different sign.

A similar effect was found by Sillero et al. (2014) for the (x, z) sections of the
autocorrelation of the spanwise velocity. They found them to be approximately square,
and showed that, when the correlation is conditioned to only positive or negative
values of w at the reference point, the correlation separates into two almost diagonal
patterns, which form the square when added together. Here, sweeps and ejections
contribute to the ‘nose’ and ‘tail’ of the unconditional correlation of v, respectively.
This is confirmed in figure 11(c) which shows the autocorrelation functions of v at
y/h≈ 0.05:

Cvv(1x, y, y′ = 0.05h)= 〈v(x+1x, y)v(x, y′ = 0.05h)〉, (5.4)

where the average 〈·〉 is performed in three different ways: unconditionally (shaded in
the figure) and conditioned to either negative (dashed lines) or positive (solid lines)
values of v at the reference point v(x, 0.05h).

Figure 11(d) shows that the wall-parallel sections of the conditioning burst are
roughly circular, whereas the conditional partners are bean-shaped, but we will show
in § 5.1 that the mismatch between the shapes of the bursts and of their partners is
almost surely an artefact of the conditional average, not of the instantaneous flow
fields.

Figure 12 shows a cross-flow section of the conditional q̃2 field. The figure is
conditioned on v, and the shaded contours are streamwise velocity perturbations. The
sign of the primary u structure (near Z = 0) is opposite to the one of v, forming a
classical (Q2, u < 0, v > 0) or (Q4, u > 0, v < 0) eddy. Both cases have a weaker
partner of opposite polarity at Z/yc ≈−1.2, and the complete structure shares many
features with the conditional pairs of uv Qs in Lozano-Durán et al. (2012) and
Dong et al. (2017), which were conditioned on their intensity, without regard to their
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895 A23-28 M. P. Encinar and J. Jiménez

temporal evolution. Those authors found that strong Qs can be classified as ‘attached’,
with roots that extend very near the wall, or ‘detached’, which do not. The attached
Qs are self-similar, as in the present case, form Q2–Q4 pairs of size comparable to
the present ones and, when conditionally averaged by centring them on the centre of
gravity of the pair, they also contain a roller between streaks. They are responsible
for most of the tangential Reynolds stress in the flow. Similar rollers have been
identified as part of the self-sustaining cycle of the buffer layer, where they tend to
be almost parallel to the wall (Jiménez & Moin 1991; Hamilton et al. 1995; Jiménez
& Pinelli 1999; Schoppa & Hussain 2002; Jiménez et al. 2005), and are also believed
to be important in the logarithmic layer (Flores & Jiménez 2010; de Giovanetti et al.
2017). In our case, the roller remains inclined in the (Ξ, y) plane at approximately
15◦ during the evolution (not shown), sitting between the pair of streaks. This is
similar to the inclinations previously found from the autocorrelation of u (see Sillero
et al. (2014) for a review). The similarity between all these structures suggests that
bursts, Qs and quasi-streamwise vortices are different manifestations of the same
phenomenon.

Up to now, we have described bursts at the moment of their maximum intensity,
but figures 13(a) and 13(b) show the time evolution of a constant isosurface of ṽ2 for
the conditional evolution of an ejection and a sweep, respectively. The burst is always
located at Z/yc ≈ 0, and its partner structure at Z/yc ≈−1.2, as in figure 11(d). The
conditional evolution spans a total of SΛT=8, clearly showing an Orr-like evolution of
the inclination angle and amplitude of the burst in both cases. The partner structure is
present during the full evolution, and is amplified by approximately the same amount
as the conditioning burst, but with half its average intensity. Figure 13(c,d) shows the
evolution of the streamwise velocity streaks during the same conditional event. They
are considerably longer (∼20yc) than the v-bursts (∼3yc) and, unlike the latter, which
have a single secondary lateral structure, they have a pair of comparable streaks of
the opposite sign at each side. However, although there is some amplification of the
streak during the burst, evidenced in the figure by the thickening and lengthening of
their u isosurface, it is less clear than the amplification of v. In particular, the streaks
are already present in the conditioning volume when the v-burst begins to form, and
remain in it when the burst disappears. The alternating pattern of streaks contains
a maximum in the magnitude of the spanwise variation of the streamwise velocity,
∂ ũ/∂z, located within the pair of bursts. This local extrema of the spanwise variation
could be a marker of the sinous instability of the streamwise streaks, reminiscent of
the dynamics of the buffer-layer streaks analysed by other authors (Hamilton et al.
1995; Waleffe 1997). However, it should be considered that the conditional structure
is strongly affected by the correlation of the wall-normal velocity with the rest of the
flow, and thus the local maxima of ∂ ũ/∂z observed in the conditional eddy could be
an effect of the correlation of the spanwise derivative with v.

Figure 14 shows longitudinal Z = 0 sections of the conditional evolutions in
figure 13 at different moments during the burst. To be able to compare it with
the band-pass-filtered conditional evolution in § 4.2, we also provide contours of
the band-pass-filtered streamwise velocity, obtained by filtering the conditional field
(which already is an average of low-pass-filtered fields) with a high-pass filter
chosen so that the scales retained by the combined effect of the two filters are
comparable to the band-pass filter in § 4. Filtering the streamwise velocity in this
way reveals an inner ‘core’ of the streak. While the longer ‘body’ of the streak is
always tilted forwards, the much shorter core tilts both backwards and forwards in
synchrony with the wall-normal velocity. This confirms the different nature of the
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FIGURE 13. Mean evolution of ṽ2 and ũ2 conditioned to the presence of a burst in
F2000. The snapshots range from SΛT =−4 to 4. The flow moves in the direction of the
dashed arrow, and the mean advection between snapshots has been removed. (a,b) The
blue surface corresponds to ṽ+2 <−0.15 and the red to ṽ+2 > 0.15. (a) Conditioned to a
sweep. (b) Conditioned to an ejection. (c,d) As in (a,b), but for the evolution of ũ2; the
surfaces are: blue, ũ+2 <−0.15; red, ũ+2 > 0.15.

short (band-pass-filtered) and long (low-pass-filtered) perturbations of the streamwise
velocity discussed in § 4. It is worth noting that the sweep is located towards the
front of the high-speed streak, whereas the ejection tends to be closer to the back of
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FIGURE 14. (a–c) The Z = 0 section of the low-pass-filtered low-speed streak (dashed
lines, |ũ+2 |= [0.15,0.3]) and its associated ejection (shaded contours, |ṽ+2 |= [0.15,0.3,0.6]).
The solid lines are the shorter wavelengths of the filtered streamwise velocity, comparable
to the band-pass-filtered velocity in § 4, as explained in the text. (a) SΛT=−2; (b) SΛT=0;
(c) SΛT = 2. (d–f ) As in (a–c), but for the high-speed streak, and the wall-normal velocity
sweep. F2000.

the low-speed streak, recalling a similar arrangement of streaks and vortices in the
buffer layer (see figure 9b in Jiménez, del Álamo & Flores (2004)).

Before interpreting these results, it is important to understand that figures 13(c,d)
and 14 do not represent instantaneous streaks, or even averaged ones, but the part of
the streak conditioned to the presence of a strong burst of v. As such, the intensity of
the structures in those figures reflects both the intensity of the fluctuations of u and
how u is correlated to the burst. For example, the isolines in figure 14 do not represent
the intensity of u, and cannot be used to estimate that intensity except probably near
the inner core. Any attempt to derive from them whether the burst is a consequence
of the presence of the streak, or the other way around, is bound to be speculative. In
the same way, the fact that the streaks in figure 13(c,d) are not seen to strengthen
during the burst does not mean that they do not do so (or vice versa).

With these restrictions in mind, the simplest interpretation of the positional bias in
figure 14 is that the streaks are ‘wakes’ created by sweeps and ejections advected
by the mean flow at the wall distance at which they originate (Jiménez et al. 2004).
Sweeps, coming from above, move faster than the local mean speed and bring
high-speed fluid down, leaving a high-speed wake upstream. The effect of the
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FIGURE 15. The Z= 0 section of the low-pass-filtered streamwise velocity streaks (|ũ+2 |=
[0.3]) for F2000. Lines are: orange, Λ2; green, Λ3; red, Λ4. (a) Low-speed streaks. (b)
High-speed streaks.

ejections is the opposite. However, it was argued by del Álamo et al. (2006) that this
explanation is unlikely, because the v-bursts do not live long enough. Thus, if we
take their lifetime to be the same as for Qs, T+ ≈ 2y+c , and the velocity difference
to be O(1.5uτ ) (Lozano-Durán & Jiménez 2014), the maximum length of their wake
would be O(3yc). This is the length of the inner core in figure 14, but much shorter
than the length of the streak. A more likely possibility is that each streak is created
by several bursts, each of which contributes a small fraction to its length (del Álamo
et al. 2006). The fact that the conditional streaks weaken so little away from the peak
of the burst in figure 13(c,d) also strongly suggests that the streaks are stable features
of the flow, while the burst grows and eventually disappears within them. This is
supported by the known streamwise distance between consecutive Qs, 1x ≈ 7yc
(Lozano-Durán et al. 2012; Dong et al. 2017), which is much shorter than the streak
length. These dimensions will be confirmed for the bursts in the next section.

In fact, if we accept the argument above that very long wakes cannot be a
consequence of short-lived bursts, the scaling of figure 14 with the filter width can
be used to extract some causal information. We saw in discussing figure 11 that the
size on the v-burst is proportional to yc∝Λ. The inner core of the streak in figure 14
also scales with Λ, which is not surprising because it is created by a pseudo-band-pass
filter of that size. The causal information is contained in the scaling of the rest of the
streak, which is obtained with a low-pass filter, and therefore contains all the scales
larger than Λ. Although not shown in the figure to avoid clutter, most of the streak
dimensions scale with h, not with Λ, suggesting that most of the streak is not caused
by the burst, nor directly causes it. The only regions that scale with Λ are the upper
edge of the leftward tail of the low-speed streak in figure 14(a–c) and the underside
of the rightward nose of the high-speed streak in figure 14(d–f ). Both regions are
approximately indicated by a dotted rectangle in figure 14(b,e), and shown for the
filters Λ2–Λ4 in figure 15, which scales the high- and low-speed streaks with yc.

We may now come back to the question of what causes the positional bias in
figure 14, which is part of the wider question of what causes sweeps and ejections
to be organised along streaks. It is generally accepted that wall-normal velocity
perturbations create streaks by deforming the mean profile. However, the typical
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intense v-structure, i.e. an Orr burst, is much shorter than the streak, and it is clear
from the discussion in the previous paragraphs that it implies something else organises
the bursts so that the short streak segments join into longer objects. The possibility
that streak instability is responsible for the bursts has been mentioned often, although
the detailed mechanism is unclear (see discussions in Schoppa & Hussain (2002) and
Farrell & Ioannou (2012)), as well as the possibility that long streaks are compound
objects (Jiménez 2018). However, most of these analyses deal with infinite uniform
streaks, and cannot explain a preferential longitudinal distribution of the bursts within
them. Although the question of which are the original perturbations that give rise
to the formation of bursts is beyond the scope of the present paper, an obvious
suggestion of the above observations is that bursts are preferentially created at the
‘active’ end, i.e. where the burst is located. This is the same location where the streak
‘collides’ with the ambient flow, either where the upper surface of the back of the
slow streaks is overrun by the faster flow behind or where the bottom of the ‘nose’
of the faster streak overruns the slower flow ahead. This is justified if we consider
that it is only these edges that scale with yc, and thus can be affected by the bursts.
The rear and upper parts of the high-speed streaks scale better with h, and so do the
front parts of the low-speed streaks. The dynamics affecting this should in principle
be independent of the bursts. A somewhat similar distribution of active regions was
observed by Abe, Kawamura & Choi (2004), who studied the relation of large-scale
structures in channels with stresses at the wall. The sweeps were found to be related
to the part of the high-speed streaks that had a footprint of intense spanwise shear at
the wall, this being the ‘active’ part.

A slightly different interpretation of the same data is that the streak interaction does
not take place at the end of a streak, but in the front of a meander in which high-speed
flow pushes into a low-speed one. The conditional data in figure 14 are not enough to
distinguish between those two possibilities, even when inspected in other flow sections
or in three-dimensional views, and all that can probably be said is that bursts tend to
be created at pre-existing longitudinal inhomogeneities of the streaks.

5.1. Space–time organisation of sweeps and ejections
It remains unclear from the previous discussion whether the secondary v structure
that appears to one side of the conditioning burst in figures 11 and 13(a,b) is an
independent Orr burst, a true companion of the conditioning burst or another unrelated
structure. However, it seems unlikely that v ‘monopoles’ of any given sign, strong
enough to be reflected in the conditional average, appear isolated in the flow, because
continuity requires that the mean wall-normal velocity over patches of dimensions
comparable to the distance from the wall should vanish. Our baseline hypothesis,
motivated in part by the similarity of the conditional averages in figure 11 to the
conditional Qs in Lozano-Durán et al. (2012) and Lozano-Durán & Jiménez (2014),
is that bursts appear in side-by-side pairs of opposite sign, and that the secondary
structure in figures 11 and 13 is just a poorly centred reflection of the opposite-signed
partner of the burst being used to condition the evolution.

To verify this, we compute the distance between the centres of each detected
sweep and its closest ejection, and vice versa, defined in the mean-convective frame
of reference:

L2 =
[
(1tuτ )2 + (1z)2 + (1ξ)2

]1/2
. (5.5)

Lozano-Durán et al. (2012) and Dong et al. (2017) give similar statistics for
unconditional Qs, although without the inclusion of the time difference. In their
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FIGURE 16. Probability mass functions (p.m.f.s) of the number of partners of each
structure. (a) Sketch of the definitions of pair, partner and number of partners (node
degree). (b) The p.m.f. of the number of sweep partners for ejections (open symbols)
and ejection partners for sweeps (filled symbols). (c) The p.m.f. of the number of
ejection–ejection partners (open symbols) and sweep–sweep partners (filled symbols). (b,c)
Symbols: u, Λ1; p, Λ2; q, Λ3; s, Λ4. The solid line is the corresponding distribution
for a Poisson process.

case, they require restrictions on the relative size of the eddies to avoid pairs
with very different components, but this is made unnecessary in our case by only
considering structures obtained with a particular filter. The definition of a pair is
not straightforward, and figure 16(a) shows a two-dimensional sketch of possible
complications. Each sweep, such as s1, chooses as partner its closest ejection, such
as e1, and may in turn be chosen as partner by other ejections. Partnership is not
symmetric. A given sweep may be chosen as partner by several ejections, such as
e2–e4 in the case of s3, and each of those may or may not be the ejection chosen
by the sweep as its closest partner. Couples which choose each other are defined as
pairs, such as (e1, s1) and (s3, e4) in figure 16(a), and this relation is mutual and
unique. Each structure can be part of a pair, or of none at all, but being paired
does not preclude having been chosen as a partner by other structures. Examples of
unpaired structures are e2, e3 and s2, which have not been chosen by their preferred
partner, and a paired structure with a large number of partners (or node degree, in
graph notation) is s3. Approximately 60 % of the sweeps are in pairs, and 14 % of
them are in exclusive pairs (see table 4).

There are no obvious statistical differences between the components of exclusive
and non-exclusive pairs, but pairs are not random occurrences. The probability
distribution of the degree of the sweeps and ejections is shown in figure 16(b), where
it is compared with the expected density function for Poisson-distributed structures,
represented by the solid line. It is clear that sweeps and ejections are clustered in the
sense of having a higher number of partners of the opposite type than the Poisson
model, obtained by randomising the position of the structures. On the other hand,
figure 16(c) shows the distribution of the degree of structures of the same type, which
is considerably steeper than that for the Poisson process. These two behaviours can
be informally summarised as that bursts of opposite type ‘attract’ each other, while
those of the same sign ‘repel’, and can probably be explained by the aforementioned
effect of continuity, which requires that the net wall-normal mass flux over large
areas should tend to vanish.

It is interesting that the probability of having N > 3 partners of the opposite
type in figure 16(b) follows quite closely a geometric distribution P(N) ∼ qN with
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FIGURE 17. The p.d.f.s of the distance between components of (a–d) sweep–ejection pairs
and (e–h) sweep–sweep pairs. (a,e) The p.d.f.s of the space–time distance L2, defined in
(5.5). The p.d.f.s of (b, f ) |1tuτ/yc|, (c,g) |1z/yc| and (d,h) |1ξ/yc|. In all cases, lines
are: ——, Λ1; - - - -, Λ2; — · —, Λ3; · · · · · ·, Λ4; —u—, p.d.f. of the intra-pair distance
for an equivalent Poisson process.

q = 0.4, represented by the dashed line. This is intriguing, because it implies that
the probability of being chosen as a partner is independent of how many partners a
structure already has, probably implying that some structures have to choose a distant
partner because they cannot find a closer one. This, in turn, suggests that bursts that
are not part of a local pair are relatively isolated from prospective partners of the
opposite sign. The same is not true for the same-sign partners in figure 16(c) which
do not have an exponential tail or, if they do, it is one with a much smaller parameter
than in the previous case (q ≈ 0.04). The default model proposed by Lozano-Durán
et al. (2012) from the analysis of the uv Qs is that Qs tend to cluster into streamwise
trains of tight pairs. The previous discussion suggests that the organisation into trains
is better developed than the one in pairs, or at least that many pairs are asymmetric,
with one of the partners too weak to be identified as such by the analysis.

Figure 17 shows the probability distribution of the distance between the components
of established pairs, compared with its Poisson counterpart. Figure 17(a–d) refers to
sweep–ejection pairs and figure 17(e–h) to pairs of the same type. More than 90 % of
the normalised distance between sweeps and ejections fall within L2/yc ∈ (0.5, 2), with
its mode at L2/yc≈1.1. Its p.d.f. is significantly different from the Poisson distribution,
shown in the figure as a line with filled circles. Figure 17(b–d) shows the contributions
to L2 of its different components. The main one is from the spanwise distance, which
peaks at approximately 1z/yc ≈ 1, similar to the spanwise offset between the main
and secondary eddies in figures 11 and 13. The streamwise component also plateaus
for 1ξ/yc . 1, but the temporal offset peaks for contemporaneous events (1t = 0)
and decays quickly. As with the total L2 distance, the Poisson model fails for all
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components. Events tend to be spatially farther from each other than those for the
Poisson model, but closer in the time of their peak development. The former is most
probably due to the finite size of the objects being considered. Figure 11 shows that
the (x, z) diameter of the sweeps and ejections is approximately yc, and it is not
surprising that there are few pairs in figure 17 spatially closer than that distance. On
the other hand, this restriction does not apply to time, and figure 17(b) shows that
pairs preferentially evolve in synchrony, as in figure 13.

Figure 17(e–h) tells a slightly different story about homogeneous pairs. In
the first place, although the average distances are approximately the same, the
homogeneous pairs do not show the same probability deficit at short distances as in
the heterogeneous case. Sweeps are closer to each other than their size would appear
to allow. The reason can be understood from the individual p.d.f.s in figure 17( f –h).
While the exclusion in dissimilar pairs takes place in space, similar pairs are mainly
spaced in time. The p.d.f. for 1z peaks at the origin, in agreement with the model
of a train of aligned pairs, and 1ξ is also only weakly constrained at short distances,
but these events do not happen simultaneously, and figure 17( f ) reveals a clear
deficit for 1tuτ/yc . 0.5, or S1t . 2. This is of the order of the lifetime of the burst,
suggesting that, although consecutive pairs may align along streaks, they are created
asynchronously, so that neighbouring sweeps are typically at different stages of their
life. Note that this would be consistent with the observation in figure 14 that sweeps
tend to form at the ‘active’ front of the streak, and suggests a model in which the
trains of bursts propagate incrementally while they extend the streak length. Although
it has to be emphasised that, as we have mentioned several times in this discussion,
these bursts are only very seldom symmetric hairpins, one cannot avoid noting the
similarities between this propagation model and the incremental formation of hairpin
packets analysed by Zhou et al. (1999) in the absence of turbulent background
activity.

6. Conclusions

Using wavelets as band-pass filters, we have extended the identification in Jiménez
(2015) of Orr-like bursts in minimal channel flows to computational boxes of arbitrary
size. Wavelets allow us to reduce the flow to a field of local single-scale wavetrains
whose inclination and intensity can be computed, but lack the connection with the
surrounding flow and the multiscale character of turbulence. We have complemented
this analysis with low-pass filters that retain the very large motions of the streamwise
velocity. The evolution of both filtered velocities is tracked in time. Regardless of the
filter used, we find significant statistical evidence of Orr-like evolution of localised
structures with strong wall-normal velocity.

The intense wall-normal velocity wavefronts are always vertical, and are consistently
preceded by backwards-leaning perturbations. The length and time scales of these
wavetrains are self-similar with respect to the filter width, especially in the logarithmic
layer. Increasing the Reynolds number in the range Reτ = 950–4000 simply increases
the range of scales in the logarithmic region, resulting in a wider hierarchy of
self-similar eddies. When normalised with their filter width, the events have roughly
constant duration–area, approximately filling 10 % of the time–area at a given height.

We also study the effect of the box size, using short boxes of dimensions
2πh× 2h×πh, long ones of 8πh× 2h× 3πh and comparisons with the single-mode
analysis in minimal boxes by Jiménez (2015). We find good agreement between the
three box sizes, suggesting that the dynamics of the Orr-like bursts is well captured
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in minimal domains. The similarities with Jiménez (2015) imply that further studies
of the bursting process or related dynamics could be carried using smaller, more
affordable simulations. The evolution of the inclination angle and amplitude of the
wavefronts of the three velocity components is reasonably well predicted by linearised
optimal transient growth, corroborating that the evolution of these events is dominated
by linear dynamics.

Because the statistical analysis of the wavetrains shows that the most intense events
of the wall-normal velocity are always vertical, Orr events can be identified solely
from the amplitude, allowing low-pass filters to identify Orr events while retaining
the large-scale motions and the sign of the velocity perturbations. The result is that
sweeps and ejections tend to form contemporaneous ‘pairs’, i.e. the peaking of the
sweep and of the ejection happens at the same time. The components of the pairs are
roughly aligned in the spanwise direction, forming streamwise-oriented tilted rollers,
and the rollers tend to be aligned in the streamwise direction with respect to one
another. However, rollers tend not to be contemporaneous, and the temporal offset
among contiguous rollers is comparable to their lifespan. Sweeps and ejections are
embedded in streamwise-velocity streaks of the opposite velocity sign, thus generating
negative tangential Reynolds stresses that reinforce the streaks in which they reside. In
fact, the evidence from the conditional flow histories in the space–time neighbourhood
of strong bursts is that bursts tend to form along pre-existing streaks, especially near
streamwise streak inhomogeneities.

The characteristics of the Orr events, such as their size, time scale, shape and
spatio-temporal organisation, are consistent with the attached three-dimensional
regions of intense tangential Reynolds stress studied in (Lozano-Durán et al.
2012; Lozano-Durán & Jiménez 2014; Dong et al. 2017). These works provide
strong indications that the mean shear controls the dynamics of the attached
momentum-carrying structures. The new evidence corroborates these findings,
suggesting that the ‘tall’ attached momentum-transfer structures are Orr bursts, and
can thus be reasonably well described by linear dynamics.

Acknowledgements

This work was supported by the COTURB project of the European Research
Council (ERC2014.AdG-669505). We are grateful to M. Lee for providing the data
used in figure 4.

REFERENCES

ABE, H., ANTONIA, R. A. & TOH, S. 2018 Large-scale structures in a turbulent channel flow with
a minimal streamwise flow unit. J. Fluid Mech. 850, 733–768.

ABE, H., KAWAMURA, H. & CHOI, H. 2004 Very large-scale structures and their effects on the wall
shear-stress fluctuations in a turbulent channel flow up to Re τ = 640. Trans. ASME J. Fluids
Engng 126 (5), 835–843.

ADRIAN, R. J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19 (4), 041301.
ADRIAN, R. J., MEINHART, C. D. & TOMKINS, C. D. 2000 Vortex organization in the outer region

of the turbulent boundary layer. J. Fluid Mech. 422, 1–54.
DEL ÁLAMO, J. C. & JIMÉNEZ, J. 2006 Linear energy amplification in turbulent channels. J. Fluid

Mech. 559, 205–213.
DEL ÁLAMO, J. C., JIMÉNEZ, J., ZANDONADE, P. & MOSER, R. D. 2004 Scaling of the energy

spectra in turbulent channels. J. Fluid Mech. 500, 135–144.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

30
2

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
id

ad
 P

ol
ite

cn
ic

a 
de

 M
ad

ri
d,

 o
n 

08
 Ju

n 
20

20
 a

t 0
7:

09
:4

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2020.302
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Momentum transfer by linearised eddies in channel flows 895 A23-37

DEL ÁLAMO, J. C., JIMÉNEZ, J., ZANDONADE, P. & MOSER, R. D. 2006 Self-similar vortex clusters
in the logarithmic region. J. Fluid Mech. 561, 329–358.

BRANDT, L. & HENNINGSON, D. S. 2002 Transition of streamwise streaks in zero-pressure-gradient
boundary layers. J. Fluid Mech. 472, 229–261.

BROWN, G. L. & ROSHKO, A. 1974 On density effects and large structure in turbulent mixing layers.
J. Fluid Mech. 64, 775–816.

BUTLER, K. M. & FARRELL, B. F. 1992 Three-dimensional optimal perturbations in viscous shear
flow. Phys. Fluids A 4 (8), 1637–1650.

CANUTO, C., HUSSAINI, M. Y., QUARTERONI, A. & ZANG, T. A. 1988 Spectral Methods in Fluid
Dynamics. Springer.

CESS, R. D. 1958 A survey of the literature on heat transfer in turbulent tube flow. Westinghouse
Research Rep. 8-0529-R24.

DONG, S., LOZANO-DURÁN, A., SEKIMOTO, A. & JIMÉNEZ, J. 2017 Coherent structures in
statistically stationary homogeneous shear turbulence. J. Fluid Mech. 816, 167–208.

FARGE, M. 1992 Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech.
24 (1), 395–458.

FARRELL, B. F. & IOANNOU, P. J. 1993 Optimal excitation of three-dimensional perturbations in
viscous constant shear flow. Phys. Fluids A 5 (6), 1390–1400.

FARRELL, B. F. & IOANNOU, P. J. 2012 Dynamics of streamwise rolls and streaks in turbulent
wall-bounded shear flow. J. Fluid Mech. 708, 149–196.

FLORES, O. & JIMÉNEZ, J. 2006 Effect of wall-boundary disturbances on turbulent channel flows.
J. Fluid Mech. 566, 357–376.

FLORES, O. & JIMÉNEZ, J. 2010 Hierarchy of minimal flow units in the logarithmic layer. Phys.
Fluids 22 (7), 071704.

DE GIOVANETTI, M., SUNG, H. J. & HWANG, Y. 2017 Streak instability in turbulent channel flow:
the seeding mechanism of large-scale motions. J. Fluid Mech. 832, 483–513.

HAMILTON, J. M., KIM, J. & WALEFFE, F. 1995 Regeneration mechanisms of near-wall turbulence
structures. J. Fluid Mech. 287, 317–348.

HOYAS, S. & JIMÉNEZ, J. 2006 Scaling of the velocity fluctuations in turbulent channels up to
Reτ = 2003. Phys. Fluids 18 (1), 011702.

HWANG, Y. & COSSU, C. 2010 Linear non-normal energy amplification of harmonic and stochastic
forcing in the turbulent channel flow. J. Fluid Mech. 664, 51–73.

JIMÉNEZ, J. 2013 How linear is wall-bounded turbulence? Phys. Fluids 25 (11), 110814.
JIMÉNEZ, J. 2015 Direct detection of linearized bursts in turbulence. Phys. Fluids 27 (6), 065102.
JIMÉNEZ, J. 2018 Coherent structures in wall-bounded turbulence. J. Fluid Mech. 842, 1.
JIMÉNEZ, J., DEL ÁLAMO, J. C. & FLORES, O. 2004 The large-scale dynamics of near-wall

turbulence. J. Fluid Mech. 505, 179–199.
JIMÉNEZ, J. & HOYAS, S. 2008 Turbulent fluctuations above the buffer layer of wall-bounded flows.

J. Fluid Mech. 611, 215–236.
JIMÉNEZ, J., KAWAHARA, G., SIMENS, M. P., NAGATA, M. & SHIBA, M. 2005 Characterization of

near-wall turbulence in terms of equilibrium and bursting solutions. Phys. Fluids 17, 015105.
JIMÉNEZ, J. & MOIN, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225,

221–240.
JIMÉNEZ, J. & PINELLI, A. 1999 The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389,

335–359.
KAWAHARA, G. & KIDA, S. 2001 Periodic motion embedded in plane Couette turbulence: regeneration

cycle and burst. J. Fluid Mech. 449, 291–300.
KIM, H. T., KLINE, S. J. & REYNOLDS, W. C. 1971 The production of turbulence near a smooth

wall in a turbulent boundary layer. J. Fluid Mech. 47, 133–160.
KIM, J. 1989 On the structure of pressure fluctuations in simulated turbulent channel flow. J. Fluid

Mech. 205, 421–451.
KIM, J., MOIN, P. & MOSER, R. D. 1987 Turbulence statistics in fully developed channel flow at

low Reynolds number. J. Fluid Mech. 177, 133–166.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

30
2

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
id

ad
 P

ol
ite

cn
ic

a 
de

 M
ad

ri
d,

 o
n 

08
 Ju

n 
20

20
 a

t 0
7:

09
:4

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2020.302
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


895 A23-38 M. P. Encinar and J. Jiménez

KLINE, S. J., REYNOLDS, W. C., SCHRAUB, F. A. & RUNSTADLER, P. W. 1967 The structure of
turbulent boundary layers. J. Fluid Mech. 30, 741–773.

KOLMOGOROV, A. N. 1941 Local structure of turbulence in an incompressible fluid at very high
Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 9–13.

LEE, M. & MOSER, R. D. 2015 Direct numerical simulation of turbulent channel flow up to Reτ ∼
5200. J. Fluid Mech. 774, 395–415.

LELE, S. K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys.
103 (1), 16–42.

LEUNG, T., SWAMINATHAN, N. & DAVIDSON, P. A. 2012 Geometry and interaction of structures in
homogeneous isotropic turbulence. J. Fluid Mech. 710, 453–481.

LOZANO-DURÁN, A., FLORES, O. & JIMÉNEZ, J. 2012 The three-dimensional structure of momentum
transfer in turbulent channels. J. Fluid Mech. 694, 100–130.

LOZANO-DURÁN, A. & JIMÉNEZ, J. 2014 Time-resolved evolution of coherent structures in turbulent
channels: characterization of eddies and cascades. J. Fluid Mech. 759, 432–471.

LU, S. S. & WILLMARTH, W. W. 1973 Measurements of the structure of the Reynolds stress in a
turbulent boundary layer. J. Fluid Mech. 60, 481–511.

MALKUS, W. V. R. 1956 Outline of a theory of turbulent shear flow. J. Fluid Mech. 1 (5), 521–539.
MENEVEAU, C. 1991 Analysis of turbulence in the orthonormal wavelet representation. J. Fluid

Mech. 232, 469–520.
MOIN, P. & MOSER, R. D. 1989 Characteristic-eddy decomposition of turbulence in a channel.

J. Fluid Mech. 200, 471–509.
ORR, W. M. 1907 The stability or instability of the steady motions of a perfect liquid and of a

viscous liquid. Part I: A perfect liquid. Proc. R. Irish Acad. A 27, 9–68.
PUJALS, G., GARCÍA-VILLALBA, M., COSSU, C. & DEPARDON, S. 2009 A note on optimal transient

growth in turbulent channel flows. Phys. Fluids 21 (1), 015109.
REYNOLDS, W. C. & TIEDERMAN, W. G. 1967 Stability of turbulent channel flow, with application

to Malkus’ theory. J. Fluid Mech. 27, 253–272.
RUELLE, D. & TAKENS, F. 1971 On the nature of turbulence. Commun. Math. Phys. 20 (3), 167–192.
SCHMID, P. J. & HENNINGSON, D. S. 2001 Stability and Transition in Shear Flows. Springer.
SCHOPPA, W. & HUSSAIN, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid

Mech. 453, 57–108.
SILLERO, J., JIMÉNEZ, J. & MOSER, R. D. 2014 Two-point statistics for turbulent boundary layers

and channels at Reynolds numbers up to δ+ ∼ 2000. Phys. Fluids 26 (10), 105–109.
SQUIRE, H. B. 1933 On the stability for three-dimensional disturbances of viscous fluid flow between

parallel walls. Proc. R. Soc. Lond. A 142 (847), 621–628.
SREENIVASAN, K. R. 1985 On the fine-scale intermittency of turbulence. J. Fluid Mech. 151, 81–103.
STRETCH, D. D. 1990 Automated pattern eduction from turbulent flow diagnostics. In CTR Annu.

Res. Briefs, pp. 145–157.
TENNEKES, H. & LUMLEY, J. L. 1972 A First Course on Turbulence. MIT Press.
TOWNSEND, A. A. 1976 The Structure of Turbulent Shear Flows. Cambridge University Press.
VELA-MARTÍN, A., ENCINAR, M. P., GARCÍA-GUTIÉRREZ, A. & JIMÉNEZ, J. 2018 A second-order

consistent, low-storage method for time-resolved channel flow simulations. Comput. Fluids
(submitted) arXiv:1808.06461.

WALEFFE, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9 (4), 883–900.
WALLACE, J. M., ECKELMANN, H. & BRODKEY, R. S. 1972 The wall region in turbulent shear

flow. J. Fluid Mech. 54, 39–48.
WILLMARTH, W. W. & LU, S. S. 1972 Structure of the Reynolds stress near the wall. J. Fluid

Mech. 55, 65–92.
ZHOU, J., ADRIAN, R. J., BALACHANDAR, S. & KENDALL, T. M. 1999 Mechanisms for generating

coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353–396.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

30
2

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
id

ad
 P

ol
ite

cn
ic

a 
de

 M
ad

ri
d,

 o
n 

08
 Ju

n 
20

20
 a

t 0
7:

09
:4

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

http://www.arxiv.org/abs/1808.06461
https://doi.org/10.1017/jfm.2020.302
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

	Momentum transfer by linearised eddies in turbulent channel flows
	Introduction
	The linear model
	Optimal transient growth

	Methods
	The numerical datasets
	Filtering
	The band-pass-filtered pseudo-spectrum
	Filter parameters

	Band-pass-filtered amplitude and inclination fields
	Wall-parallel velocities
	Conditional mean evolutions

	Low-pass-filtered velocity fields
	Space–time organisation of sweeps and ejections

	Conclusions
	Acknowledgements
	References


